Assessing the Impact of Land Use and Land Cover Changes on Aflaj Systems over a 36-Year Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset Preparation for Spatial Modeling
2.2.1. Landsat Data
2.2.2. Image Segmentation and Classification
2.2.3. Accuracy Assessment
2.2.4. Change Detection
2.2.5. Changes in LULCs and Their Impact on Four Key Dawoodi Falajs
2.2.6. Euclidean Distance Function and the Direction of Urban Expansion Tools
3. Results
3.1. Accuracy Assessments
3.2. LULC Change Detections
3.3. Urban Expansion Direcions
3.4. Euclidean Distance
3.5. LULC Detection of Aflaj
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schilling, K.E.; Jha, M.K.; Zhang, Y.-K.; Gassman, P.W.; Wolter, C.F. Impact of Land Use and Land Cover Change on the Water Balance of a Large Agricultural Watershed: Historical Effects and Future Directions. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Nigatu, Z.M.; Fan, D.; You, W.; Melesse, A.M.; Pu, L.; Yang, X.; Wan, X.; Jiang, Z. Crop Production Response to Soil Moisture and Groundwater Depletion in the Nile Basin Based on Multi-Source Data. Sci. Total Environ. 2022, 825, 154007. [Google Scholar] [CrossRef] [PubMed]
- Bisselink, B.; Bernhard, J.; Gelati, E.; Adamovic, M.; Guenther, S.; Mentaschi, L.; De Roo, A. Impact of a Changing Climate, Land Use, and Water Usage on Europe’s Water Resources; A Model Simul. Study; Joint Research Centre (JRC): Karlsruhe, Germany, 2018. [Google Scholar]
- Dunn, S.M.; Brown, I.; Sample, J.; Post, H. Relationships between Climate, Water Resources, Land Use and Diffuse Pollution and the Significance of Uncertainty in Climate Change. J. Hydrol. 2012, 434, 19–35. [Google Scholar] [CrossRef]
- Elmahdy, S.; Mohamed, M.; Ali, T. Land Use/land Cover Changes Impact on Groundwater Level and Quality in the Northern Part of the United Arab Emirates. Remote Sens. 2020, 12, 1715. [Google Scholar] [CrossRef]
- Schilling, K.E.; Chan, K.-S.; Liu, H.; Zhang, Y.-K. Quantifying the Effect of Land Use Land Cover Change on Increasing Discharge in the Upper Mississippi River. J. Hydrol. 2010, 387, 343–345. [Google Scholar] [CrossRef]
- Rajmohan, N.; Al-Futaisi, A.; Jamrah, A. Evaluation of Long-Term Groundwater Level Data in Regular Monitoring Wells, Barka, Sultanate of Oman. Hydrol. Process. 2007, 21, 3367–3379. [Google Scholar] [CrossRef]
- Al-Nasri, A.-M.; Gunawardhana, L.N.; Al-Rawas, G.A.; Baawain, M.S.; Sana, A. Multi-Layer Groundwater Flow Simulation in Al-Khoud Lower Catchment in Oman. J. Appl. Water Eng. Res. 2022, 10, 250–260. [Google Scholar] [CrossRef]
- S. Choudri, B.; Al-Busaidi, A.; Ahmed, M. Climate Change, Vulnerability and Adaptation Experiences of Farmers in Al-Suwayq Wilayat, Sultanate of Oman. Int. J. Clim. Chang. Strateg. Manag. 2013, 5, 445–454. [Google Scholar] [CrossRef]
- Remmington, G. Transforming Tradition: The Aflaj and Changing Role of Traditional Knowledge Systems for Collective Water Management. J. Arid Environ. 2018, 151, 134–140. [Google Scholar] [CrossRef]
- Al-Zadjali, S.; Al-Rawahi, Z.; Al-Brashdi, H. Bader. Adv. Meteorol. 2021, 2021, 5543205. [Google Scholar] [CrossRef]
- Al-Kindi, K.M.; Al Nadhairi, R.; Al Akhzami, S. Dynamic Change in Normalised Vegetation Index (NDVI) from 2015 to 2021 in Dhofar, Southern Oman in Response to the Climate Change. Agriculture 2023, 13, 592. [Google Scholar] [CrossRef]
- Al-Marshoudi, A.S.; Bin Sibly, S.; Khelghat-Doost, H. Successfully Mutual Cooperative Collective Action: Principle of Institutional Arrangement of the Aflaj Irrigation System in Sultanate of Oman BT-Water Resources in Arid Lands: Management and Sustainability; Al-Maktoumi, A., Abdalla, O., Kacimov, A., Zekri, S., Chen, M., Al-Hosni, T., Madani, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 175–184. [Google Scholar]
- Alsharhan, A.S.; Rizk, Z.E. Aflaj Systems: History and Factors Affecting Recharge and Discharge BT-Water Resources and Integrated Management of the United Arab Emirates; Alsharhan, A.S., Rizk, Z.E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 257–280. ISBN 978-3-030-31684-6. [Google Scholar]
- Zekri, S.; Powers, D.; Al-Ghafri, A. Century Old Water Markets in Oman BT-Water Markets for the 21st Century: What Have We Learned? Easter, K.W., Huang, Q., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 149–162. ISBN 978-94-017-9081-9. [Google Scholar]
- Norman, W.R.; Shayya, W.H.; Al-Ghafri, A.S.; McCANN, I.R. Aflaj Irrigation and on-Farm Water Management in Northern Oman. Irrig. Drain. Syst. 1997, 12, 35–48. [Google Scholar] [CrossRef]
- Ghrefat, H.A.; Jamarh, A.; Al-Futaisi, A.; Al-Abri, B. Water Quality Mapping and Assessment, and Weathering Processes of Selected Aflaj in Oman. Environ. Monit. Assess. 2011, 181, 509–524. [Google Scholar] [CrossRef]
- Al-Marshudi, A.S. Traditional Irrigated Agriculture in Oman. Water Int. 2001, 26, 259–264. [Google Scholar] [CrossRef]
- Alsharhan, A.S.; Rizk, Z.E. Challenges Facing Water Resources BT-Water Resources and Integrated Management of the United Arab Emirates; Alsharhan, A.S., Rizk, Z.E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 501–529. ISBN 978-3-030-31684-6. [Google Scholar]
- Deadman, M.L.; Al-Sadi, A.M.; Al-Wardi, M.M.; Al-Kiyumi, K.S.M.; Deadman, W.M.; Al Said, F.A. Spatio-Temporal Dynamics of Land Use Changes in Response to External Pressures in Oman: Greenhouse Cropping as an Example. J. Agric. Mar. Sci. 2016, 21, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Harris, R. Remote Sensing of Agriculture Change in Oman. Int. J. Remote Sens. 2003, 24, 4835–4852. [Google Scholar] [CrossRef]
- Schütze, N.; Kloss, S.; Lennartz, F.; Al Bakri, A.; Schmitz, G.H. Optimal Planning and Operation of Irrigation Systems under Water Resource Constraints in Oman Considering Climatic Uncertainty. Environ. Earth Sci. 2012, 65, 1511–1521. [Google Scholar] [CrossRef]
- Kotagama, H.; Zekri, S.; Al Harthi, R.; Boughanmi, H. Demand Function Estimate for Residential Water in Oman. Int. J. Water Resour. Dev. 2017, 33, 907–916. [Google Scholar] [CrossRef]
- Kumar, C.P. Climate Change and Its Impact on Groundwater Resources. Int. J. Eng. Sci. 2012, 1, 43–60. [Google Scholar]
- Li, P.; Tian, R.; Xue, C.; Wu, J. Progress, Opportunities, and Key Fields for Groundwater Quality Research under the Impacts of Human Activities in China with a Special Focus on Western China. Environ. Sci. Pollut. Res. 2017, 24, 13224–13234. [Google Scholar] [CrossRef] [PubMed]
- Viana, C.M.; Girão, I.; Rocha, J. Long-Term Satellite Image Time-Series for Land Use/Land Cover Change Detection Using Refined Open Source Data in a Rural Region. Remote Sens. 2019, 11, 1104. [Google Scholar] [CrossRef] [Green Version]
- Chughtai, A.H.; Abbasi, H.; Karas, I.R. A Review on Change Detection Method and Accuracy Assessment for Land Use Land Cover. Remote Sens. Appl. Soc. Environ. 2021, 22, 100482. [Google Scholar] [CrossRef]
- Allam, M.; Bakr, N.; Elbably, W. Multi-Temporal Assessment of Land Use/land Cover Change in Arid Region Based on Landsat Satellite Imagery: Case Study in Fayoum Region, Egypt. Remote Sens. Appl. Soc. Environ. 2019, 14, 8–19. [Google Scholar] [CrossRef]
- Onilude, O.O.; Vaz, E. Urban Sprawl and Growth Prediction for Lagos Using GlobeLand30 Data and Cellular Automata Model. Science 2021, 3, 23. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Peña-Haro, S.; García-Prats, A.; Mocholi-Almudever, A.F.; Henriquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A. Integrated Assessment of the Impact of Climate and Land Use Changes on Groundwater Quantity and Quality in the Mancha Oriental System (Spain). Hydrol. Earth Syst. Sci. 2015, 19, 1677–1693. [Google Scholar] [CrossRef] [Green Version]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land Use Change Mapping and Analysis Using Remote Sensing and GIS: A Case Study of Simly Watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Sp. Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Leh, M.; Bajwa, S.; Chaubey, I. Impact of Land Use Change on Erosion Risk: An Integrated Remote Sensing, Geographic Information System and Modeling Methodology. Land Degrad. Dev. 2013, 24, 409–421. [Google Scholar] [CrossRef]
- Allafta, H.; Opp, C.; Patra, S. Identification of Groundwater Potential Zones Using Remote Sensing and GIS Techniques: A Case Study of the Shatt Al-Arab Basin. Remote Sens. 2020, 13, 112. [Google Scholar] [CrossRef]
- Rai, P.K.; Chandel, R.S.; Mishra, V.N.; Singh, P. Hydrological Inferences through Morphometric Analysis of Lower Kosi River Basin of India for Water Resource Management Based on Remote Sensing Data. Appl. Water Sci. 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Luedeling, E.; Buerkert, A. Effects of Land Use Changes on the Hydrological Sustainability of Mountain Oases in Northern Oman. Plant Soil 2008, 304, 1–20. [Google Scholar] [CrossRef]
- Buerkert, A.; Dix, B.A.; Al Rawahi, M.N.; Schlecht, E. Agro-Ecological Landuse Transformation in Oasis Systems of Al Jabal Al Akhdar, Northern Oman. Sci. Rep. 2021, 11, 7709. [Google Scholar] [CrossRef] [PubMed]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring Land Use and Land Cover Changes in the Mountainous Cities of Oman Using GIS and CA-Markov Modelling Techniques. Land Use Policy 2020, 91, 104414. [Google Scholar] [CrossRef]
- Burri, N.M.; Weatherl, R.; Moeck, C.; Schirmer, M. A Review of Threats to Groundwater Quality in the Anthropocene. Sci. Total Environ. 2019, 684, 136–154. [Google Scholar] [CrossRef]
- Han, D.; Currell, M.J. Review of Drivers and Threats to Coastal Groundwater Quality in China. Sci. Total Environ. 2022, 806, 150913. [Google Scholar] [CrossRef]
- Al-Kindi, K.M.; Kwan, P.; Andrew, N.R.; Welch, M. Remote Sensing and Spatial Statistical Techniques for Modelling Ommatissus Lybicus (Hemiptera: Tropiduchidae) Habitat and Population Densities. PeerJ 2017, 2017, e3752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nath, B.; Ni-Meister, W.; Choudhury, R. Impact of Urbanization on Land Use and Land Cover Change in Guwahati City, India and Its Implication on Declining Groundwater Level. Groundw. Sustain. Dev. 2021, 12, 100500. [Google Scholar] [CrossRef]
- Liaqat, M.U.; Mohamed, M.M.; Chowdhury, R.; Elmahdy, S.I.; Khan, Q.; Ansari, R. Impact of Land Use/land Cover Changes on Groundwater Resources in Al Ain Region of the United Arab Emirates Using Remote Sensing and GIS Techniques. Groundw. Sustain. Dev. 2021, 14, 100587. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change Detection Techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Pérez-Cabello, F.; Lasanta, T. Assessment of Radiometric Correction Techniques in Analyzing Vegetation Variability and Change Using Time Series of Landsat Images. Remote Sens. Environ. 2008, 112, 3916–3934. [Google Scholar] [CrossRef]
- Asner, G.P. Cloud Cover in Landsat Observations of the Brazilian Amazon. Int. J. Remote Sens. 2001, 22, 3855–3862. [Google Scholar] [CrossRef]
- Hossain, M.D.; Chen, D. Segmentation for Object-Based Image Analysis (OBIA): A Review of Algorithms and Challenges from Remote Sensing Perspective. ISPRS J. Photogramm. Remote Sens. 2019, 150, 115–134. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-Resolution, Object-Oriented Fuzzy Analysis of Remote Sensing Data for GIS-Ready Information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Smith, A. Image Segmentation Scale Parameter Optimization and Land Cover Classification Using the Random Forest Algorithm. J. Spat. Sci. 2010, 55, 69–79. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Stefanski, J.; Mack, B.; Waske, B. Optimization of Object-Based Image Analysis With Random Forests for Land Cover Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2492–2504. [Google Scholar] [CrossRef]
- Promper, C.; Puissant, A.; Malet, J.-P.; Glade, T. Analysis of Land Cover Changes in the Past and the Future as Contribution to Landslide Risk Scenarios. Appl. Geogr. 2014, 53, 11–19. [Google Scholar] [CrossRef]
- Liu, X.; Kang, C.; Gong, L.; Liu, Y. Incorporating Spatial Interaction Patterns in Classifying and Understanding Urban Land Use. Int. J. Geogr. Inf. Sci. 2016, 30, 334–350. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An Extended AVHRR 8-km NDVI Dataset Compatible with MODIS and SPOT Vegetation NDVI Data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Lyons, M.B.; Keith, D.A.; Phinn, S.R.; Mason, T.J.; Elith, J. A Comparison of Resampling Methods for Remote Sensing Classification and Accuracy Assessment. Remote Sens. Environ. 2018, 208, 145–153. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Saurí, D. Post-Classification Change Detection with Data from Different Sensors: Some Accuracy Considerations. Int. J. Remote Sens. 2003, 24, 3311–3340. [Google Scholar] [CrossRef]
- Thakkar, A.K.; Desai, V.R.; Patel, A.; Potdar, M.B. Post-Classification Corrections in Improving the Classification of Land Use/Land Cover of Arid Region Using RS and GIS: The Case of Arjuni Watershed, Gujarat, India. Egypt. J. Remote Sens. Space Sci. 2017, 20, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Alqurashi, A.F.; Kumar, L. An Assessment of the Impact of Urbanization and Land Use Changes in the Fast-Growing Cities of Saudi Arabia. Geocarto Int. 2019, 34, 78–97. [Google Scholar] [CrossRef]
- Megdiche-Kharrat, F.; Moussa, M.; Rejeb, H. Aflaj’ Water Management in Oman: The Case of Falaj Al-Khatmeen in Birkat Al-Mouz, Wilayat Nizwa BT-Water and Land Security in Drylands: Response to Climate Change; Ouessar, M., Gabriels, D., Tsunekawa, A., Evett, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 119–128. ISBN 978-3-319-54021-4. [Google Scholar]
- Behrens, T.; Schmidt, K.; Viscarra Rossel, R.A.; Gries, P.; Scholten, T.; MacMillan, R.A. Spatial Modelling with Euclidean Distance Fields and Machine Learning. Eur. J. Soil Sci. 2018, 69, 757–770. [Google Scholar] [CrossRef]
- Zhang, J. Multi-Source Remote Sensing Data Fusion: Status and Trends. Int. J. Image Data Fusion 2010, 1, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin III, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14. [Google Scholar] [CrossRef]
- Lal, R. Soil Degradation by Erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Abdulbaqi, A.K.; Suleyman, M.A.; Thamer, A.M.; Nassereldeen, K.A. Integrated Water Resource Management Plan (IWRMP) in Oman: Way Forward. Water Policy 2007, 9, 457–473. [Google Scholar] [CrossRef]
- Zekri, S.; Al-Marshudi, A.S. A Millenarian Water Rights System and Water Markets in Oman. Water Int. 2008, 33, 350–360. [Google Scholar] [CrossRef]
- Ahmed, M.; Victor, R.; Jashoul, M.; Choudri, B.S. Utilization of Low Quality Water of Mountain Reservoirs: A Case Study from Al Jabal Al Akhdar, Oman. J. Mt. Sci. 2016, 13, 1423–1430. [Google Scholar] [CrossRef]
- Abdulrab, M.; Al-Mamary, Y.H.S.; Alwaheeb, M.A.; Alshammari, N.G.M.; Balhareth, H.; Al-Shammari, S.A. Mediating Role of Strategic Orientations in the Relationship between Entrepreneurial Orientation and Performance of Saudi SMEs. Braz. J. Oper. Prod. Manag. 2021, 18, 1–15. [Google Scholar] [CrossRef]
- Choudri, B.S.; Baawain, M.; Ahmed, M.; Al-Sidairi, A.; Al-Nadabi, H. Relative Vulnerability of Coastal Wilayats to Development: A Study of Al-Batinah North, Oman. J. Coast. Conserv. 2015, 19, 51–57. [Google Scholar] [CrossRef]
- Wilson, C.O.; Weng, Q. Simulating the Impacts of Future Land Use and Climate Changes on Surface Water Quality in the Des Plaines River Watershed, Chicago Metropolitan Statistical Area, Illinois. Sci. Total Environ. 2011, 409, 4387–4405. [Google Scholar] [CrossRef] [PubMed]
- Dutton, R.W. Towards a Secure Future for the Aflaj in Oman. In Proceedings of the Conference Proceedings Water-Resources Management in Arid Countries, Muscat, Oman, 12–16 March 1995; Volume 2, pp. 16–24. [Google Scholar]
- Norman, W.R.; McCann, I.; Al-Ghafri, A. On-Farm Labour Allocation and Irrigation Water Use: Case Studies among Smallholder Systems in Arid Regions. Irrig. Drain. Syst. 2008, 22, 79–92. [Google Scholar] [CrossRef]
- Powers, D. The Choice of the Provision Mechanism in the Aflaj of Oman; University of Nizwa: Nizwa, Oman, 2020. [Google Scholar]
- Al-Kindi, K.M.; Janizadeh, S. Machine Learning and Hyperparameters Algorithms for Identifying Groundwater Aflaj Potential Mapping in Semi-Arid Ecosystems Using LiDAR, Sentinel-2, GIS Data, and Analysis. Remote Sens. 2022, 14, 5425. [Google Scholar] [CrossRef]
- He, S.; Li, P.; Wu, J.; Elumalai, V.; Adimalla, N. Groundwater Quality under Land Use/land Cover Changes: A Temporal Study from 2005 to 2015 in Xi’an, Northwest China. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 2771–2797. [Google Scholar] [CrossRef]
Path | Row | Date | Sensor | Cloud Cover (%) |
---|---|---|---|---|
158 | 44 | 28–January–1985 | TM | 0 |
16–April–1990 | TM | 0 | ||
30–January–2000 | ETM+ | 0 | ||
09–November–2013 | OLI | 0.02 | ||
31–January–2021 | OLI | 0.03 | ||
159 | 43 | 23–February–1985 | TM | 1 |
07–April–1990 | TM | 0 | ||
14–February–2000 | TM | 0 | ||
02–December–2013 | OLI | 0.08 | ||
05–October–2021 | OLI | 1.77 | ||
159 | 44 | 19–January–1985 | TM | 1 |
07–April–1990 | TM | 0 | ||
14–February–2000 | TM | 0 | ||
24–May–2013 | OLI | 0 | ||
06–November–2021 | OLI | 0.05 |
(1985) Class | W | BS | VC | UA | Total | User’s Accuracy (%) |
---|---|---|---|---|---|---|
Water (W) | 110 | 0 | 0 | 0 | 110 | 100 |
Bare soil (BS) | 11 | 456 | 0 | 27 | 494 | 92.3 |
Vegetation cover (VC) | 0 | 1 | 165 | 2 | 168 | 98.2 |
Urban area (UA) | 0 | 0 | 0 | 128 | 128 | 100 |
Total | 121 | 457 | 165 | 157 | 900 | |
Producer’s accuracy (%) | 90.9 | 99.8 | 100 | 81.5 | ||
Overall accuracy (%) | 95.4 | |||||
Kappa | 0.93 | |||||
(1990) Class | W | BS | VC | UA | Total | User’s accuracy (%) |
Water (W) | 107 | 0 | 2 | 0 | 109 | 98.2 |
Bare soil (BS) | 0 | 558 | 1 | 15 | 574 | 97.2 |
Vegetation cover (VC) | 0 | 1 | 147 | 10 | 158 | 93.0 |
Urban area (UA) | 3 | 1 | 1 | 193 | 198 | 97.5 |
Total | 110 | 560 | 151 | 218 | 1039 | |
Producer’s accuracy (%) | 97.3 | 99.6 | 97.4 | 88.5 | ||
Overall accuracy (%) | 96.7 | |||||
Kappa | 0.95 | |||||
(2000) Class | W | BS | VC | UA | Total | User’s accuracy (%) |
Water (UA) | 135 | 0 | 0 | 0 | 135 | 100 |
Bare soil (BS) | 0 | 701 | 0 | 20 | 721 | 97.2 |
Vegetation cover (VC) | 0 | 0 | 311 | 8 | 319 | 97.5 |
Urban area (UA) | 0 | 0 | 4 | 249 | 253 | 98.4 |
Total | 135 | 701 | 315 | 277 | 1428 | |
Producer’s accuracy (%) | 100 | 100 | 98.7 | 89.9 | ||
Overall accuracy (%) | 97.7 | |||||
Kappa | 0.96 | |||||
(2013) Class | W | BS | VC | UA | Total | User’s accuracy (%) |
Water (W) | 144 | 0 | 0 | 1 | 145 | 99.3 |
Bare soil (BS) | 1 | 978 | 0 | 33 | 1012 | 96.6 |
Vegetation cover (VC) | 0 | 0 | 291 | 0 | 291 | 100 |
Urban area (UA) | 1 | 2 | 9 | 340 | 352 | 96.6 |
Total | 146 | 980 | 300 | 374 | 1800 | |
Producer’s accuracy (%) | 98.6 | 99.8 | 97.0 | 90.9 | ||
Overall accuracy (%) | 97.3 | |||||
Kappa | 0.96 | |||||
(2021) Class | W | BS | VC | UA | Total | User’s accuracy (%) |
Water (W) | 132 | 0 | 0 | 0 | 132 | 100 |
Bare soil (BS) | 26 | 1044 | 11 | 21 | 1102 | 94.7 |
Vegetation cover (VC) | 2 | 2 | 380 | 0 | 384 | 99.0 |
Urban area | 1 | 2 | 16 | 476 | 495 | 96.2 |
Total | 161 | 1048 | 407 | 497 | 2113 | |
Producer’s accuracy (%) | 82 | 100 | 93.4 | 95.8 | ||
Overall accuracy (%) | 96.2 | |||||
Kappa | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kindi, K.M.; Alqurashi, A.F.; Al-Ghafri, A.; Power, D. Assessing the Impact of Land Use and Land Cover Changes on Aflaj Systems over a 36-Year Period. Remote Sens. 2023, 15, 1787. https://doi.org/10.3390/rs15071787
Al-Kindi KM, Alqurashi AF, Al-Ghafri A, Power D. Assessing the Impact of Land Use and Land Cover Changes on Aflaj Systems over a 36-Year Period. Remote Sensing. 2023; 15(7):1787. https://doi.org/10.3390/rs15071787
Chicago/Turabian StyleAl-Kindi, Khalifa M., Abdullah F. Alqurashi, Abdullah Al-Ghafri, and Dennis Power. 2023. "Assessing the Impact of Land Use and Land Cover Changes on Aflaj Systems over a 36-Year Period" Remote Sensing 15, no. 7: 1787. https://doi.org/10.3390/rs15071787
APA StyleAl-Kindi, K. M., Alqurashi, A. F., Al-Ghafri, A., & Power, D. (2023). Assessing the Impact of Land Use and Land Cover Changes on Aflaj Systems over a 36-Year Period. Remote Sensing, 15(7), 1787. https://doi.org/10.3390/rs15071787