Monitoring Coastal Water Body Health with Sentinel-2 MSI Imagery
Abstract
:1. Introduction
- Eutrophication: in situ microalgal abundance (phytoplankton chlorophyll a) and water clarity (turbidity)
- Habitat extent of seagrasses, mangroves, and saltmarshes
- Fish assemblages: species diversity, composition, abundance
2. Materials and Methods
2.1. Study Area: Bombah Broadwater, Myall Lake, and Wallis Lake
2.2. In Situ Data
2.3. Imagery and Processing
2.4. Comparing In Situ Data with Remote Sensing Product Outputs
2.5. Policy Reporting
- (1)
- Non-compliant score, based on the number of non-compliant samples. Non-compliant means the value of chlorophyll a or turbidity being above the trigger value.
- Trigger value chlorophyll a: 2.5 μg/L
- Trigger value turbidity: 6.7 NTU
- Expressed as: non-compliance = number of samples above trigger value/total number of samples (e.g., 0.6 = 3/5)
- (2)
- Distance of the non-compliant measured value to the worst expected value
- Worst expected value chlorophyll a: 30 μg/L
- Worst expected value turbidity: 20 NTU
- Expressed as: distance = (measured value − trigger value)/(worst expected value − trigger value)
- (3)
- Final indicator score (calculated both for chlorophyll and turbidity)
- Expressed as: final score = √(non-compliance score × distance score)
- The final score is determined by the amount of non-compliant scores. If there are 0 non-compliant scores, then the water quality score is 0, which leads to water quality grade A (best score). The distance score is only calculated for data greater than the trigger value (non-compliant values).
- (4)
- Final zone score calculation
- Expressed as the average of the chlorophyll a and turbidity indicator score
- (5)
- Comparison against the benchmark and grading
- A: score between 0 and 0.07
- B: score between 0.07 and 0.27
- C: score between 0.27 and 0.44
- D: score between 0.44 and 0.60
- E: score between 0.60 and 1
3. Results
3.1. Correlation between Field Observations and RS Product Estimates
3.1.1. Chlorophyll a Concentration
3.1.2. Water Clarity
3.2. Reporting Water Quality Grades
4. Discussion
4.1. ‘One-Size-Fits-All’ Solution and Ecological Differences
4.2. Water Quality Grading for Policy Reporting
4.3. Reliability and Consistency
4.4. Recommendations for Further Development and Integration of Remote Sensing Data into Policy
- (i).
- Consideration must be given to carefully timing in-situ sampling in association with the fly-over times of satellites. This will improve the validity and statistical power of comparisons.
- (ii).
- Variables captured by in situ measurements and assessed via remote sensing must be calibrated for local application.
- (iii).
- (iv).
- Even though the algorithm can process an image ‘as is’ (it processes atmospheric correction to above-water reflectance), some specialists perform additional processing steps. These steps include cloud and cloud shadow masking, the application of a land mask, sun glint removal, or (when shallow parts should be excluded) an automated process to determine reflectance at the bottom of the lake [69]. These are technical aspects that could be seen as hurdles by lay users.
- (v).
- The target set should be meaningful for the monitored ecosystem. As systems behave differently, different targets and approaches might be suitable for different water bodies. Similarly, for remote sensing and in situ measurements, monitoring chlorophyll a and water quality may be a solution for many coastal lakes, but it might miss local ecological details in different estuary types. So, while a state-wide policy is a good framework, it could also allow for ecological differences between systems and specified targets. It seems desirable to address the ecosystems with a more flexible target setting and apply stratified monitoring in which the water bodies along the coast are divided into more groups than only lakes and rivers. A water body classification [15] could be a starting point for dividing estuaries into more specified monitoring groups.
- (vi).
- For continuous use of remote sensing within a monitoring program, a standard method should be designed that is feasible from a policy perspective and sensitive enough to pick up ecological differences relevant to each system. Such a program should be set up in collaboration with remote sensing experts and ecologists.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Commonwealth of Australia. Wetlands and Biodiversity; Department of the Environment, Australian Government: Canberra, Australia, 2016. [Google Scholar]
- UNESCO. Proceedings of the Convention on Wetlands of International Importance Especially as Waterfowl Habitat; UNESCO: London, UK, 1994. [Google Scholar]
- MDBA. Managing Australia’s Water Resources; Murray-Darling Basin Authority: Canberra, Australia, 2011. [Google Scholar]
- Hale, J.; Stoffels, R.; Butcher, R.; Shackleton, M.; Brooks, S.; Gawne, B.; Stewardson, M. Commonwealth Environmental Water Office Long Term Intervention Monitoring Project—Standard Methods; MDFRC Publication: Canberra, Australia, 2014. [Google Scholar]
- Hallett, C.S.; Valesini, F.; Elliott, M. A review of Australian approaches for monitoring, assessing and reporting estuarine condition: I. International context and evaluation criteria. Environ. Sci. Policy 2016, 66, 260–269. [Google Scholar] [CrossRef] [Green Version]
- OEH. Assessing Estuary Ecosystem Health: Sampling, Data Analysis and Reporting Protocols, in New South Wales Natural Resources Monitoring, Evaluation and Reporting Program; Office of Environment and Heritage: Sydney, Australia, 2016. [Google Scholar]
- Hallett, C.S.; Valesini, F.; Scanes, P.; Crawford, C.; Gillanders, B.M.; Pope, A.; Udy, J.; Fortune, J.; Townsend, S.; Barton, J.; et al. A review of Australian approaches for monitoring, assessing and reporting estuarine condition: II. State and Territory programs. Environ. Sci. Policy 2016, 66, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Boyd, C.E. Water Quality: An Introduction; Springer Nature: Berlin, Germany, 2019. [Google Scholar]
- Ramadas, M.; Samantaray, A.K. Samantaray, A.K. Samantaray, Applications of Remote Sensing and GIS in Water Quality Monitoring and Remediation: A State-of-the-Art Review. In Water Remediation; Bhattacharya, S., Gupta, A., Gupta, A., Pandey, A., Eds.; Springer: Singapore, 2018; pp. 225–246. [Google Scholar]
- Barinova, S. On the Classification of Water Quality from an Ecological Point of View. Int. J. Environ. Sci. Nat. Resour. 2017, 2, 555581. [Google Scholar] [CrossRef] [Green Version]
- Chawla, I.; Karthikeyan, L.; Mishra, A.K. A review of remote sensing applications for water security: Quantity, quality, and extremes. J. Hydrol. 2020, 585, 124826. [Google Scholar] [CrossRef]
- Anderson, D.M. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast. Manag. 2009, 52, 342–347. [Google Scholar] [CrossRef] [Green Version]
- Roper, T.; Creese, B.; Scanes, P.; Stephens, K.; Williams, R.; Delac-Cruz, J.; Coade, G.; Coates, B.; Fraser, M. . Assessing the Condition of Estuaries and Coastal Lake Ecosystems in NSW; Office of Environment and Heritage: Sydney, Australia, 2011. [Google Scholar]
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Roy, P.; Williams, R.; Jones, A.; Yassini, I.; Gibbs, P.; Coates, B.; West, R.; Scanes, P.; Hudson, J.; Nichol, S. Structure and Function of South-east Australian Estuaries. Estuar. Coast. Shelf Sci. 2001, 53, 351–384. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Oppelt, N. Remote sensing for lake research and monitoring—Recent advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- NHMRC. National Water Quality Management Strategy; Commonwealth of Australia: Canberra, Australia, 2011. [Google Scholar]
- Midcoast-Council. Waterway and Catchment Report; MidCoast Council: Taree, Australia, 2018. [Google Scholar]
- Sakuno, Y.; Yajima, H.; Yoshioka, Y.; Sugahara, S.; Elbasit, M.A.M.A.; Adam, E.; Chirima, J.G. Evaluation of Unified Algorithms for Remote Sensing of Chlorophyll-a and Turbidity in Lake Shinji and Lake Nakaumi of Japan and the Vaal Dam Reservoir of South Africa under Eutrophic and Ultra-Turbid Conditions. Water 2018, 10, 618. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Qiu, Z.; Zhou, Y.; Sun, D.; Wang, S.; Wu, W.; Perrie, W. Comparisons of algorithms to estimate water turbidity in the coastal areas of China. Int. J. Remote. Sens. 2016, 37, 6165–6186. [Google Scholar] [CrossRef]
- Koike, K.; Mai, T. Selecting the Best Band Ratio to Estimate Chlorophyll-a Concentration in a Tropical Freshwater Lake Using Sentinel 2A Images from a Case Study of Lake Ba Be (Northern Vietnam). ISPRS Int. J. Geo-Inf. 2017, 6, 290. [Google Scholar]
- Lyu, H.; Li, X.; Wang, Y.; Jin, Q.; Cao, K.; Wang, Q.; Li, Y. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes. Sci. Total. Environ. 2015, 530–531, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Yacobi, Y.Z.; Moses, W.; Kaganovsky, S.; Sulimani, B.; Leavitt, B.C.; Gitelson, A.A. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Res. 2011, 45, 2428–2436. [Google Scholar] [CrossRef] [Green Version]
- Gons, H.J. Optical Teledetection of Chlorophyll a in Turbid Inland Waters. Environ. Sci. Technol. 1999, 33, 1127–1132. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Lins, R.C.; Martinez, J.-M.; Marques, D.D.M.; Cirilo, J.A.; Fragoso, C.R. Assessment of Chlorophyll-a Remote Sensing Algorithms in a Productive Tropical Estuarine-Lagoon System. Remote Sens. 2017, 9, 516. [Google Scholar] [CrossRef] [Green Version]
- Gordon, H.R.; Brown, O.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic radiance model of ocean color. J. Geophys. Res. Atmos. 1988, 93, 10909–10924. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Earth Surf. 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kondratyev, K.Y. Optical models of mesotrophic and eutrophic water bodies. Int. J. Remote Sens. 1991, 12, 373–385. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Rundquist, D.C. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters. Geophys. Res. Lett. 2003, 30, 1938. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierman, P.; Lewis, M.; Ostendorf, B.; Tanner, J. A review of methods for analysing spatial and temporal patterns in coastal water quality. Ecol. Indic. 2011, 11, 103–114. [Google Scholar] [CrossRef]
- Wang, X.; Yang, W. Water quality monitoring and evaluation using remote sensing techniques in China: A systematic review. Ecosyst. Health Sustain. 2019, 5, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Mohseni, F.; Saba, F.; Mirmazloumi, S.M.; Amani, M.; Mokhtarzade, M.; Jamali, S.; Mahdavi, S. Ocean water quality monitoring using remote sensing techniques: A review. Mar. Environ. Res. 2022, 180, 105701. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Han, X.; Chen, X.; Qi, L. Long-Term Distribution Patterns of Chlorophyll-a Concentration in China’s Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach. Remote. Sens. 2014, 7, 275–299. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.N.; Borstad, G.A.; Ersahin, K.; Loos, E.; Selbie, D.; Costa, M.; Irvine, J.R. Satellite-Based Time Series of Chlorophyll in Chilko Lake, British Columbia, Canada. Can. J. Remote. Sens. 2019, 45, 368–385. [Google Scholar] [CrossRef] [Green Version]
- Salem, S.I.; Higa, H.; Kim, H.; Kobayashi, H.; Oki, K.; Oki, T. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands. Sensors 2017, 17, 1746. [Google Scholar] [CrossRef] [Green Version]
- Topp, S.N.; Pavelsky, T.M.; Jensen, D.; Simard, M.; Ross, M.R.V. Research Trends in the Use of Remote Sensing for Inland Water Quality Science: Moving Towards Multidisciplinary Applications. Water 2020, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- OEH. Myall Lakes Ramsar Site Ecological Charachter Description; Office of Environment and Heritage, NSW: Sydney, Australia, 2012. [Google Scholar]
- Drew, S.; Flett, I.; Wilson, J.; Heijnis, H.; Skilbeck, C.G. The trophic history of Myall Lakes, New South Wales, Australia: Interpretations using [delta]13C and [delta]15N of the sedimentary record. Hydrobiologia 2008, 608, 35–47. [Google Scholar] [CrossRef]
- Dasey, M.; Ryan, N.; Wilson, J.; McGregor, G.; Fabbro, L.; Neilan, B.A.; Burns, B.P.; Kankaanpää, H.; Morrison, L.F.; Codd, G.A.; et al. Investigations into the taxonomy, toxicity and ecology of benthic cyanobacterial accumulations in Myall Lake, Australia. Mar. Freshw. Res. 2005, 56, 45–55. [Google Scholar] [CrossRef]
- Midcoast-Council. Waterway and Catchment Report Card; MidCoast Council: Taree, Australia, 2018. [Google Scholar]
- Fiebig, S. Summary of Ecological Information for the Wallis Lake Potential Ramsar Site; Department of Environment and Climate Change: Canberra, Australia, 2010. [Google Scholar]
- OEH. Data from NSW Office of Environment and Heritage, Estuary Health Program; Office of Environment & Heritage: Sydney, Australia, 2018. [Google Scholar]
- ESA. Sentinel-2 User Handbook; European Space Agency: Paris, France, 2015. [Google Scholar]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Warren, M.; Simis, S.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Ansper, A.; Alikas, K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. 2019, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- ABB. The Measurement of Turbidity and Suspended Solids in Wastewater; Abb Measurement & Analytics: Warminster, PA, USA, 2017. [Google Scholar]
- Bulmer, R.H.; Townsend, M.; Drylie, T.; Lohrer, A.M. Elevated Turbidity and the Nutrient Removal Capacity of Seagrass. Front. Mar. Sci. 2018, 5, 462. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Cahoon, D.R.; Friess, D.A.; Guntenspergen, G.R.; Krauss, K.W.; Reef, R.; Rogers, K.; Saunders, M.L.; Sidik, F.; Swales, A.; et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 2015, 526, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Woodroffe, C.; Rogers, K.; McKee, K.; Lovelock, C.; Mendelssohn, I.; Saintilan, N. Mangrove Sedimentation and Response to Relative Sea-Level Rise. Annu. Rev. Mar. Sci. 2016, 8, 243–266. [Google Scholar] [CrossRef] [Green Version]
- Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M.L.; Wolff, C.; Lincke, D.; McOwen, C.J.; Pickering, M.D.; Reef, R.; Vafeidis, A.T.; et al. Future response of global coastal wetlands to sea-level rise. Nature 2018, 561, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Saprygin, V.; Povazhnyi, V. Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters—The Azov Sea case study. Remote Sens. Environ. 2012, 121, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Nechad, B.; Dogliotti, A.; Ruddick, K.; Doxaran, D. Particulate backscattering and suspended matter concentration retrieval from remote-sensed turbidity in various coastal and riverine turbid waters. In Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Jafar-Sidik, M.; Gohin, F.; Bowers, D.; Howarth, J.; Hull, T. The relationship between Suspended Particulate Matter and Turbidity at a mooring station in a coastal environment: Consequences for satellite-derived products. Oceanologia 2017, 59, 365–378. [Google Scholar] [CrossRef]
- Nicolai-Shaw, N.; Hirschi, M.; Mittelbach, H.; Seneviratne, S.I. Spatial representativeness of soil moisture using in situ, remote sensing, and land reanalysis data. J. Geophys. Res. Atmos. 2015, 120, 9955–9964. [Google Scholar] [CrossRef]
- Zuo, D.; Cai, S.; Xu, Z.; Peng, D.; Kan, G.; Sun, W.; Pang, B.; Yang, H. Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data. Agric. Water Manag. 2019, 222, 125–138. [Google Scholar] [CrossRef]
- Tian, F.; Brandt, M.; Liu, Y.Y.; Verger, A.; Tagesson, T.; Diouf, A.A.; Rasmussen, K.; Mbow, C.; Wang, Y.; Fensholt, R. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 2016, 177, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Beamish, A.; Raynolds, M.K.; Epstein, H.; Frost, G.V.; Macander, M.J.; Bergstedt, H.; Bartsch, A.; Kruse, S.; Miles, V.; Tanis, C.M.; et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sens. Environ. 2020, 246, 111872. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef]
- Croke, J. River Flows and Bue-Green Algae. Fact Sheet 10. 2002. Available online: https://www.water.vic.gov.au/__data/assets/pdf_file/0032/409748/facts10.pdf (accessed on 28 December 2022).
- Connecticut Department of Energy & Environmental Protection. Frequently Asked Questions on Cyanobacteria Blooms in Freshwater Lakes and Ponds. 2020. Available online: https://portal.ct.gov/-/media/DEEP/water/water_quality_management/cyanobacteria/Cyanobacteria-FAQ_June-3-2020.pdf (accessed on 28 December 2022).
- Klemas, V. Remote Sensing of Algal Blooms: An Overview with Case Studies. J. Coast. Res. 2012, 28, 34–43. [Google Scholar] [CrossRef]
- O’Grady, J.; Zhang, D.; O’Connor, N.; Regan, F. A comprehensive review of catchment water quality monitoring using a tiered framework of integrated sensing technologies. Sci. Total. Environ. 2021, 765, 142766. [Google Scholar] [CrossRef]
- English, D.C.; Carder, K.L. Determining Bottom Reflectance and Water Optical Properties Using Unmanned Underwater Vehicles under Clear or Cloudy Skies. J. Atmospheric Ocean. Technol. 2006, 23, 314–324. [Google Scholar] [CrossRef]
Lake | Waterbody Type | Monitored Indicators |
---|---|---|
Bombah Broadwater Myall Lake Wallis Lake | Brackish barrier lake Brackish barrier lake Wave dominated barrier estuary | Chlorophyll a Turbidity Chlorophyll a Turbidity Chlorophyll a Turbidity Seagrass presence |
Lake | Variable | Year | RS Product | R2 | p-Value |
---|---|---|---|---|---|
Bombah Broadwater (inner lake) | chlorophyll a | 2017 | ACOLITE Moses | 0.78 | 0.01 |
Bombah Broadwater (whole lake) | chlorophyll a | 2017 | ACOLITE Oceancolor 3 ACOLITE Moses | 0.64 0.67 | 0.03 0.02 |
Bombah Broadwater (inner lake) | chlorophyll a | 2018 | ACOLITE Oceancolor 3 | 0.71 | 0.02 |
Bombah Broadwater (inner lake) | chlorophyll a | 2017 + 2018 | ACOLITE Moses | 0.42 | 0.01 |
Bombah Broadwater (whole lake) | chlorophyll a | 2017 + 2018 | ACOLITE Oceancolor 3 ACOLITE Moses | 0.35 0.41 | 0.02 0.01 |
Bombah Broadwater (inner lake) | Water clarity | 2017 | C2RCC suspended matter ACOLITE Nechad suspended matter ACOLITE Nechad turbidity | 0.50 0.71 0.71 | 0.05 0.02 0.02 |
Bombah Broadwater (whole lake) | Water clarity | 2017 | ACOLITE Nechad suspended matter ACOLITE Nechad turbidity | 0.56 0.56 | 0.05 0.05 |
Myall Lake (inner lake) | Water clarity | 2018 | C2RCC suspended matter | 0.57 | 0.05 |
Myall Lake (inner lake) | chlorophyll a | 2017 + 2018 | ACOLITE Oceancolor 3 | 0.32 | 0.03 |
Myall Lake (inner lake) | Water clarity | 2017 + 2018 | C2RCC suspended matter | 0.46 | 0.01 |
Myall Lake (whole lake) | Water clarity | 2017 + 2018 | C2RCC suspended matter | 0.46 | 0.01 |
Wallis Lake (inner lake) | Water clarity | 2017 | C2RCC suspended matter ACOLITE Nechad suspended matter ACOLITE Nechad turbidity | 0.77 0.96 0.96 | 0.05 0.00 0.00 |
Wallis Lake (whole lake) | Water clarity | 2017 | ACOLITE Nechad suspended matter ACOLITE Nechad turbidity | 0.95 0.95 | 0.00 0.00 |
Wallis Lake (inner lake) | Water clarity | 2017 + 2018 | ACOLITE Nechad suspended matter ACOLITE Nechad turbidity | 0.47 0.47 | 0.01 0.01 |
Wallis Lake (whole lake) | Water clarity | 2017 + 2018 | ACOLITE Nechad suspended matter ACOLITE Nechad turbidity | 0.44 0.44 | 0.01 0.01 |
Lake + Part | Season | Report Card Grade | RS Product | Grade Based on RS Product Estimates | ||
---|---|---|---|---|---|---|
Chlorophyll a | Water Clarity | Inner Lake | Whole Lake | |||
Bombah Broadwater | 2017 | B B B | Moses Oceancolor 3 * C2RCC | Nechad (FNU) Nechad (FNU) Nechad (FNU) | C B - | D C B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lock, M.; Saintilan, N.; van Duren, I.; Skidmore, A. Monitoring Coastal Water Body Health with Sentinel-2 MSI Imagery. Remote Sens. 2023, 15, 1734. https://doi.org/10.3390/rs15071734
Lock M, Saintilan N, van Duren I, Skidmore A. Monitoring Coastal Water Body Health with Sentinel-2 MSI Imagery. Remote Sensing. 2023; 15(7):1734. https://doi.org/10.3390/rs15071734
Chicago/Turabian StyleLock, Marcelle, Neil Saintilan, Iris van Duren, and Andrew Skidmore. 2023. "Monitoring Coastal Water Body Health with Sentinel-2 MSI Imagery" Remote Sensing 15, no. 7: 1734. https://doi.org/10.3390/rs15071734
APA StyleLock, M., Saintilan, N., van Duren, I., & Skidmore, A. (2023). Monitoring Coastal Water Body Health with Sentinel-2 MSI Imagery. Remote Sensing, 15(7), 1734. https://doi.org/10.3390/rs15071734