Huge CH4, NO2 and CO Emissions from Coal Mines in the Kuznetsk Basin (Russia) Detected by Sentinel-5P
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Kemerovo Region, Russia
2.2. TROPOMI Data and Observations
2.3. Methodology
3. Results
3.1. Data Availability
3.2. Background Tendency of CH4
3.3. Detection of High Methane Emissions Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Trenchev, P. Use of Satellite Data with Medium Spatial Resolution to Detect Atmospheric Methane Pollution. Ph.D. Thesis, Space Research Institute at the Bulgarian Academy of Sciences, Sofia, Bulgaria, November 2022. [Google Scholar]
- Labzovskii, L.D.; Belikov, D.A.; Damiani, A. Space borne NO2 observations are sensitive to coal mining and processing in the largest coal basin of Russia. Sci Rep. 2022, 12, 12597. [Google Scholar] [CrossRef]
- Pandey, B.; Gautam, M.; Agrawal, M. Greenhouse gas emissions from coal mining activities and their possible mitigation strategies. In Environmental Carbon Footprints; Butterworth-Heinemann: Oxford, UK, 2018; pp. 259–294. [Google Scholar]
- Guanter, L.; Irakulis-Loitxate, I.; Gorroño, J.; Sánchez-García, E.; Cusworth, D.H.; Varon, D.J.; Cogliati, S.; Colombo, R. Mapping methane point emissions with the PRISMA space borne imaging spectrometer. Remote Sens. Environ. 2021, 265, 112671. [Google Scholar] [CrossRef]
- Aydin, G.; Karakurt, I.; Aydiner, K. Analysis and Mitigation Opportunities of Methane Emissions from the Energy Sector. Energy Sources Part A Recovery Util. Environ. Eff. 2012, 34, 967–982. [Google Scholar] [CrossRef]
- UNECE. Best Practice Guidance for Effective Management of Coal Mine Methane at National Level: Monitoring, Reporting, Verification and Mitigation; United Nations: Geneva, Switzerland, 2022; pp. 1–43.
- Jeong, U.; Hong, H. Comparison of Total Column and Surface Mixing Ratio of Carbon Monoxide Derived from the TROPOMI/Sentinel-5 Precursor with In-Situ Measurements from Extensive Ground-Based Network over South Korea. Remote Sens. 2021, 13, 3987. [Google Scholar] [CrossRef]
- Reichle, H.G., Jr.; Connors, V.S. The mass of CO in the atmosphere during October 1984, April 1994, and October 1994. J. Atmos. Sci. 1999, 56, 307. [Google Scholar] [CrossRef]
- Bezirtzoglou, E.; Alexopoulos, A. Ozone history and ecosystems: A goliath from impacts to advance industrial benefits and interests, to environmental and therapeutical strategies. Ozone Deplet. Chem. Impacts 2009, 135–145. [Google Scholar]
- Fuglestvedt, J.S.; Berntsen, T.; Isaksen, I.S.A.; Mao, H.; Liang, X.Z.; Wang, W.C. Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane. Atmos. Environ. 1999, 33, 961–977. [Google Scholar] [CrossRef]
- Li, A.; Chen, C.; Chena, J.; Leia, P. Environmental investigation of pollutants in coal mine operation and waste dump area monitored in Ordos Region, China. RSC Adv. 2021, 11, 10340–10352. [Google Scholar] [CrossRef]
- Gatenby, J. Urgent Steps Must Be Taken to Reduce Methane Emissions, New Report Says. 2021. Available online: https://phys.org/news/2021-05-urgent-methane-emissions.html (accessed on 12 March 2023).
- Ganesan, A.L.; Schwietzke, S.; Poulter, B.; Arnold, T.; Lan, X.; Rigby, M.; Vogel, F.; van der Werf, G.; Janssens-Maenhout, G.; Boesch, H.; et al. Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 1475–1512. [Google Scholar] [CrossRef]
- IIASA—International Institute for Applied Systems Analysis. Containing Methane and Its Contribution to Global Warming. 2020. Available online: https://phys.org/news/2020-02-methane-contribution-global.html (accessed on 12 March 2023).
- van Dingener, R.; Crippa, M.; Janssens-Maenhout, G.; Guizzardi, D.; Dentener, F. Global Trends of Methane Emissions and Their Impacts on Ozone Concentrations, JNC Science for Policy Report. 2018. Available online: https://op.europa.eu/en/publication-detail/-/publication/c40e6fc4-dbf9-11e8-afb3-01aa75ed71a1/language-en (accessed on 12 March 2023).
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Ravishankara, A.; Kuylenstierna, J.; Michalopoulou, E.; Höglund-Isaksson, L.; Zhang, Y.; Seltzer, K.; Ru, M.; Castelino, R.; Faluvegi, G.; Naik, N.; et al. GMA—Global Methane Assessment. Benefits and Costs of Mitigating Methane Emissions; United Nations Environment Programme and Climate and Clean Air Coalition: Paris, France, 2021; pp. 17–119. [Google Scholar]
- Kholod, N.; Evans, M.; Pilcher, R.; Roshchanka, V.; Ruiz, F.; Coté, M.; Collings, R. Global methane emissions from coal mining to continue growing even with declining coal production. J. Clean. Prod. 2020, 256, 120489. [Google Scholar] [CrossRef]
- European Commission. EU Methane Strategy. 2020. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1833 (accessed on 12 March 2023).
- Zhang, Y.; Gautam, R.; Pandey, S.; Omara, M.; Maasakkers, J.D.; Sadavarte, P.; Lyon, D.; Nesser, H.; Sulprizio, M.P.; Varon, D.J.; et al. Quantifying methane emissions from the largest oil-producing basin in the United States from space. Sci. Adv. 2020, 6, eaaz5120. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.; Dubey, L.; Hawkes, A. Methane detection and quantification in the upstream oil and gas sector: The role of satellites in emissions detection, reconciling and reporting. Environ. Sci. Atmos. 2022, 2, 9. [Google Scholar] [CrossRef]
- Dimitrova, M.; Nedkov, R.; Syrakov, D.; Georgieva, E.; Gochev, D.; Trenchev, P.; Veleva, B.; Atanassov, D.; Spassova, T.; Bachvarova, E. Identification of Optimal Satellite Data for Use in the Air Quality Modeling System BgCWFS. In Proceedings of the Fifteenth International Scientific Conference “Space, Ecology and Safety”, Sofia, Bulgaria, 6–8 November 2019; pp. 253–260. [Google Scholar]
- Dimitrova, M.; Trenchev, P.; Gochev, G. Spatial and Seasonal Distribution of NO2 Pollution over Bulgaria, Based on Tropomi Measurements. In Proceedings of the Sixteenth International Scientific Conference “Space, Ecology and Safety”, Sofia, Bulgaria, 4–6 November 2020; pp. 279–282. [Google Scholar]
- Dimitrova, M. Seasonal changes of Sahara desert dust transport over Balkans. Aerosp. Res. Bulg. 2021, 33, 79–86. [Google Scholar] [CrossRef]
- Ershadi, A.; Mccabe, M.F.; Evans, J.P.; Mariethoz, G.; Kavetski, D.A. Bayesian analysis of sensible heat flux estimation: Quantifying uncertainty in meteorological forcing to improve model prediction. Water Resour. Res. 2013, 49, 2343–2358. [Google Scholar] [CrossRef] [Green Version]
- Pendergrass, W.; McQueen, J.; Dimego, G.; Ek, M. Evaluation of NOAA/NCEP’s North America Mesoscale (NAM) 12-km and 4-km High-Resolution Nest (NAM4) Forecast for a typical Southern Temperate Deciduous Forest. In Proceedings of the AMS 7th Conference on Transition of Research to Operations, Seattle, WA, USA, 22–26 January 2017. [Google Scholar]
- Fiehn, A.; Kostinek, J.; Eckl, M.; Klausner, T.; Gałkowski, M.; Chen, J.; Gerbig, C.; Röckmann, T.; Maazallahi, H.; Schmidt, M.; et al. Estimating CH4, CO2 and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach. Atmos. Chem. Phys. 2020, 20, 12675–12695. [Google Scholar] [CrossRef]
- Sadavarte, P.; Pandey, S.; Maasakkers, J.; Lorente, A.; Borsdorff, T.; Denier van der Gon, H.; Houweling, S.; Aben, I. Methane emissions from super-emitting coal mines in Australia quantified using TROPOMI satellite observations. Environ. Sci. Technol. 2021, 55, 16573–16580. [Google Scholar] [CrossRef]
- Georgieva, E.; Atanassov, D.; Spassova, T.; Batchvarova, E.; Syrakov, D.; Dimitrova, M.; Nedkov, R.; Veleva, B. Satellite Information Downscaled to Urban Air Quality in Bulgaria-Project Description. Bulg. J. Meteo. Hydr. 2019, 23, 47–60. Available online: http://meteorology.meteo.bg/global-change/content-en-23-2.html (accessed on 12 March 2023).
- Lahoz, W.A.; Schneider, P. Data assimilation: Making sense of Earth Observation. Front. Environ. Sci. 2014, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, S.J. Data Assimilation for the Geosciences: From Theory to Application, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Schneider, P.; Hamer, P.D.; Kylling, A.; Shetty, S.; Stebel, K. Spatiotemporal Patterns in Data Availability of the Sentinel-5P NO2 Product over Urban Areas in Norway. Remote Sens. 2021, 13, 2095. [Google Scholar] [CrossRef]
- Britannica, The Editors of Encyclopaedia. “Kuznetsk Coal Basin”. Encyclopedia Britannica. 30 November 2015. Available online: https://www.britannica.com/place/Kuznetsk-Coal-Basin (accessed on 12 February 2023).
- GEM: Global Energy Monitor. Available online: https://globalenergymonitor.org/ (accessed on 12 March 2023).
- Varon, D.J.; McKeever, J.; Jervis, D.; Maasakkers, J.D.; Pandey, S.; Houweling, S.; Aben, I.; Scarpelli, T.; Jacob, D.J. Satellite discovery of anomalously large methane point sources from oil/gas production. Geophys. Res. Lett. 2019, 46, 13507–13516. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Gautam, R.; Houweling, S.; van der Gon, H.D.; Sadavarte, P.; Borsdorff, T.; Hasekamp, O.; Landgraf, J.; Tol, P.; van Kempen, T.; et al. Satellite observations reveal extreme methane leakage from a natural gas well blowout. Proc. Natl. Acad. Sci. USA 2019, 116, 26376–26381. [Google Scholar] [CrossRef]
- Cusworth, D.H.; Jacob, D.J.; Sheng, J.-X.; Benmergui, J.; Turner, A.J.; Brandman, J.; White, L.; Randles, C.A. Detecting high-emitting methane sources in oil/gas fields using satellite observations. Atmos. Chem. Phys. 2018, 18, 16885–16896. [Google Scholar] [CrossRef] [Green Version]
- Plant, G.; Kort, E.A.; Murray, L.T.; Maasakkers, J.D.; Aben, I. Evaluating urban methane emissions from space using TROPOMI methane and carbon monoxide observations. Remote Sens. Environ. 2022, 268, 112756. [Google Scholar] [CrossRef]
- Open Access Hub. Available online: https://scihub.copernicus.eu (accessed on 10 March 2023).
- Earth Online Tools. SNAP. Available online: https://earth.esa.int/eogateway/tools/snap (accessed on 10 March 2023).
- Bertin, E.; Arnouts, S. SExtractor: Software for source extraction. Astron. Astrophys. Suppl. Ser. 1996, 117, 393–404. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, Z.; Wu, Z.; Marinello, F. Spatial Variation of NO2 and Its Impact Factors in China: An Application of Sentinel-5P Products. Remote Sens. 2019, 11, 1939. [Google Scholar] [CrossRef] [Green Version]
- Crosman, E. Meteorological Drivers of Permian Basin Methane Anomalies Derived from TROPOMI. Remote Sens. 2021, 13, 896. [Google Scholar] [CrossRef]
- GHGSat. Available online: https://www.ghgsat.com/en/newsroom/russian-mine-produces-biggest-methane-leak-ever-seen-by-ghgsat/ (accessed on 10 January 2023).
- EcoWatch. Available online: https://www.ecowatch.com/methane-leak-russia-coal-mine.html (accessed on 10 January 2023).
- GeoSpatialWorld. Available online: https://www.geospatialworld.net/prime/technology-and-innovation/worlds-biggest-methane-leak-detected-in-russian-coal-mine/ (accessed on 10 January 2023).
- Wang, C.; Wang, T.; Wang, P.; Wang, W. Assessment of the Performance of TROPOMI NO2 and SO2 Data Products in the North China Plain: Comparison, Correction and Application. Remote Sens. 2022, 14, 214. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trenchev, P.; Dimitrova, M.; Avetisyan, D. Huge CH4, NO2 and CO Emissions from Coal Mines in the Kuznetsk Basin (Russia) Detected by Sentinel-5P. Remote Sens. 2023, 15, 1590. https://doi.org/10.3390/rs15061590
Trenchev P, Dimitrova M, Avetisyan D. Huge CH4, NO2 and CO Emissions from Coal Mines in the Kuznetsk Basin (Russia) Detected by Sentinel-5P. Remote Sensing. 2023; 15(6):1590. https://doi.org/10.3390/rs15061590
Chicago/Turabian StyleTrenchev, Plamen, Maria Dimitrova, and Daniela Avetisyan. 2023. "Huge CH4, NO2 and CO Emissions from Coal Mines in the Kuznetsk Basin (Russia) Detected by Sentinel-5P" Remote Sensing 15, no. 6: 1590. https://doi.org/10.3390/rs15061590
APA StyleTrenchev, P., Dimitrova, M., & Avetisyan, D. (2023). Huge CH4, NO2 and CO Emissions from Coal Mines in the Kuznetsk Basin (Russia) Detected by Sentinel-5P. Remote Sensing, 15(6), 1590. https://doi.org/10.3390/rs15061590