Estimating the Forest Carbon Storage of Chongming Eco-Island, China, Using Multisource Remotely Sensed Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Images
2.3. Forest Classification and Mapping
2.4. Model Independent Variables
2.5. Field Survey and Ground Carbon Density Estimation
2.6. Model Construction
3. Results
3.1. Distribution of Forest Types and Dominant Tree Species
3.2. Correlation of Candidate Variables with Forest Carbon Density
3.3. Carbon Density Estimation Models
3.3.1. Simple Regression Models
3.3.2. Machine Learning Models
3.4. Spatial Distribution of Forest Carbon Density
3.4.1. Spatial Distribution of All-Forest Carbon Density
3.4.2. Spatial Distribution of Forest Carbon Density by Forest Type
3.4.3. Spatial Distribution of Forest Carbon Density by Dominant Tree Species
4. Discussion
4.1. Forest Carbon Storage Estimation Model Optimization
4.2. Comparison of the Forest Carbon Density with Other Urban Cities
4.3. Management Suggestions for Forest Carbon Storage Enhancement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribeiro, H.V.; Rybski, D.; Kropp, J.P. Effects of changing population or density on urban carbon dioxide emissions. Nat. Commun. 2019, 10, 3204. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.C. Several issues in urban forest research. J. Chin. Urban For. 2004, 1, 4–9. [Google Scholar]
- Lee, S.; Yim, J.; Son, Y.; Son, Y.; Kim, R. Estimation of Forest Carbon Stocks for National Greenhouse Gas Inventory Reporting in South Korea. Forests 2018, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Węgiel, A.; Polowy, K. Aboveground Carbon Content and Storage in Mature Scots Pine Stands of Different Densities. Forests 2020, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Strohbach, M.W.; Haase, D. Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landsc. Urban Plan. 2012, 104, 95–104. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, S.; Zhao, S. Valuing urban green spaces in mitigating climate change: A city-wide estimate of aboveground carbon stored in urban green spaces of China’s Capital. Glob. Chang. Biol. 2019, 25, 1717–1732. [Google Scholar] [CrossRef]
- Godwin, C.; Chen, G.; Singh, K.K. The impact of urban residential development patterns on forest carbon density: An integration of LiDAR, aerial photography and field mensuration. Landsc. Urban Plan 2015, 136, 97–109. [Google Scholar] [CrossRef]
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F.; et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Ren, Z.; Zheng, H.; He, X.; Zhang, D.; Yu, X.; Shen, G. Spatial estimation of urban forest structures with Landsat TM data and field measurements. Urban For. Urban Green. 2015, 14, 336–344. [Google Scholar] [CrossRef]
- Sun, H.; Qie, G.; Wang, G.; Tan, Y.; Li, J.; Peng, Y.; Ma, Z.; Luo, C. Increasing the Accuracy of Mapping Urban Forest Carbon Density by Combining Spatial Modeling and Spectral Unmixing Analysis. Remote Sens. 2015, 7, 15114–15139. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.; Wang, Z.; Liu, C.; Han, Y. Mapping aboveground biomass and carbon in Shanghai’s urban forest using Landsat ETM+ and inventory data. Urban For. Urban Green. 2020, 51, 126655. [Google Scholar] [CrossRef]
- Myeong, S.; Nowak, D.J.; Duggin, M.J. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens. Environ. 2006, 101, 277–282. [Google Scholar] [CrossRef]
- Amoatey, P.; Sulaiman, H.; Kwarteng, A.; Al-Reasi, H.A. Above-ground carbon dynamics in different arid urban green spaces. Environ. Earth Sci. 2018, 77, 431. [Google Scholar] [CrossRef]
- Uniyal, S.; Purohit, S.; Chaurasia, K.; Rao, S.S.; Amminedu, E. Quantification of carbon sequestration by urban forest using Landsat 8 OLI and machine learning algorithms in Jodhpur, India. Urban For. Urban Green. 2022, 67, 127445. [Google Scholar] [CrossRef]
- Mngadi, M.; Odindi, J.; Mutanga, O. The Utility of Sentinel-2 Spectral Data in Quantifying Above-Ground Carbon Stock in an Urban Reforested Landscape. Remote Sens. 2021, 13, 4281. [Google Scholar] [CrossRef]
- Zhang, F.; Tian, X.; Zhang, H.; Jiang, M. Estimation of aboveground carbon density of forests using deep learning and multisource remote sensing. Remote Sens. 2022, 14, 3022. [Google Scholar] [CrossRef]
- Ahmad, A.; Gilani, H.; Ahmad, S.R. Forest Aboveground Biomass Estimation and Mapping through High-Resolution Optical Satellite Imagery—A Literature Review. Forests 2021, 12, 914. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.S.; Chen, L.Q.; Chen, L.G.; Zhang, Y.; Liu, Y.Q. Estimating urban vegetation biomass from Sentinel-2A image data. Forests 2020, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Shanghai Municipal Government. Shanghai Carbon Peaking Action Plan; Shanghai Municipal Government: Shanghai, China, 2022.
- Dong, H.; Qian, L.; Yan, J.; Wang, L. Evaluation of the carbon accumulation capability and carbon storage of different types of wetlands in the Nanhui tidal flat of the Yangtze River estuary. Environ. Monit. Assess. 2020, 192, 585. [Google Scholar] [CrossRef]
- Qian, L.W.; Yan, J.F.; Hu, Y.; Gao, L.Y.; Wu, P.F.; Wang, L. Spatial distribution patterns of annual soil carbon accumulation and carbon storage in the Jiuduansha wetland of the Yangtze River estuary. Environ. Monit. Assess. 2019, 191, 750. [Google Scholar] [CrossRef]
- Wang, R.J.; Zhao, M.; Gao, J. Carbon storage of main vegetation types of urban forest, Chongming Island of China. Sci. Geog. Sin. 2011, 31, 490–494. [Google Scholar]
- Zhong, Q.C.; Fu, Y.; Zhang, G.L. Biomass estimation and a dynamic analysis of forests in Shanghai. J. Zhejiang Agric. For. Univ. 2019, 36, 524–532. [Google Scholar]
- Zhang, G.L. Spatial distribution characteristics of carbon storage of urban forests in Shanghai based on remote sensing estimation. Ecol. Env. Sci. 2021, 30, 1777–1786. [Google Scholar]
- Kokubu, Y.; Hara, S.; Tani, A. Mapping seasonal tree canopy cover and leaf area using Worldview-2/3 Satellite Imagery: A megacity-scale case study in Tokyo urban area. Remote Sens. 2020, 12, 1505. [Google Scholar] [CrossRef]
- Shanghai Municipal Government. Overall Plan for Chongming Three Islands; Shanghai Municipal Government: Shanghai, China, 2006.
- Shanghai Municipal Government. Chongming District Master Plan & Land Utilization Master Plan (2017–2035); Shanghai Municipal Government: Shanghai, China, 2018.
- Xie, L.J.; Flynn, A.; Tan-Mullins, M.; Cheshmehzangi, A. Water and land: Environmental governance and Chinese eco-development. J. Clean. Prod. 2019, 221, 839–853. [Google Scholar] [CrossRef]
- Chang, M.Y. Diversity and Vegetation Characteristics of Vascular Plants in Chongming, Shanghai. Master’s Thesis, East China Normal University, Shanghai, China, 2022. [Google Scholar]
- Zhang, Z.S. Study on the Characteristics of Plantation Community and Soil Physicochemical Properties in Chongming Island. Master’s Thesis, East China Normal University, Shanghai, China, 2010. [Google Scholar]
- Editorial Committee for Vegetation of China. Vegetation of China; Science Press: Beijing, China, 1980. [Google Scholar]
- Meng, C.; Li, Q.; Yang, M.; Tang, Y.J. Study on individual tree recognition technology of high resolution aerial remote sensing image based on Deep Learning. Mod. Surv. Mapp. 2023; accepted. [Google Scholar]
- Da, L.J.; Yang, T.H.; Song, Y.C. Study on the urban ecological regionalization and forest distribution in Shanghai, China. Sci. Silvae. Sin. 2004, 40, 84–88. [Google Scholar]
- Sun, W. The Type, Distribution and Coordination Evaluation of the Main Plant Communities in Chongming Island and Their Ecological Landscape. Master’s Thesis, East China Normal University, Shanghai, China, 2013. [Google Scholar]
- Dang, A.T.N.; Nandy, S.; Srinet, R.; Luong, N.V.; Ghosh, S.; Kumar, A.S. Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecol. Inform. 2019, 50, 24–32. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Nandy, S.; Srinet, R.; Padalia, H. Mapping forest height and aboveground biomass by integrating ICESat-2, Sentinel-1 and Sentinel-2 data using Random forest algorithm in northwest Himalayan foothills of India. Geophys. Res. Lett. 2021, 48, e2021GL093799. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.Y.; Zhang, B.; Wang, Z.M.; Xi, Y.B. Estimation of Forest Above-Ground Biomass by Geographically Weighted Regression and Machine Learning with Sentinel Imagery. Forests 2018, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, X. Carbon storage and sequestration by urban forests in Shenyang, China. Urban For. Urban Green. 2012, 11, 121–128. [Google Scholar] [CrossRef]
- Wu, C.; Shen, H.; Shen, A.; Deng, J.; Gan, M.; Zhu, J.; Xu, H.; Wang, K. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery. J. Appl. Remote Sens. 2016, 10, 35010. [Google Scholar] [CrossRef]
- Günlü, A.; Keleş, S.; Ercanli, İ.; Şenyurt, M. Estimation of Aboveground Stand Carbon Using Landsat 8 OLI Satellite Image: A Case Study from Turkey; Springer International Publishing: Cham, Switzerland, 2020; pp. 385–403. [Google Scholar]
- Markus, R.; Gustau, C.; Bjorn, S.; Martin, J.; Joachim, D.; Nuno, C. Deep learning and process understanding for data-driven earth system science. Science 2019, 566, 195–204. [Google Scholar]
- Hou, Z.; Xu, Q.; McRoberts, R.E.; Greenberg, J.A.; Liu, J.; Heiskanen, J.; Pitkänen, S.; Packalen, P. Effects of temporally external auxiliary data on model-based inference. Remote Sens. Environ. 2017, 198, 150–159. [Google Scholar] [CrossRef]
- Zhang, J.C. Biomass Estimation of Urban Lands and Analysis of Its Spatio-Temporal Variation in Hangzhou City. Master’s Thesis, Zhejiang A&F University, Hangzhou, China, 2014. [Google Scholar]
- Zeng, G.L. Research on the Change of Vegetation Coverage and Carbon Storage Based on Remote Sensing-Take Ganzhou City as an Example. Master’s Thesis, Jiangxi University of Science and Technology, Nanchang, China, 2017. [Google Scholar]
- Zhang, H. Vegetation Carbon Storage in Xi’an in Recent Years Dynamic Responses to Land-Use Cover Change. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2011. [Google Scholar]
- Ren, D.Z.; Liao, X.Y.; Xiao, Q.G.; Lai, C.H.; Song, F.; Meng, S.M. Carbon storage and spatial distribution pattern of forest vegetation in Chengdu. J. West China For. Sci. 2021, 50, 74–81. [Google Scholar]
- Kang, W.X.; Tian, Z.; He, J.N.; Cui, S.S. Carbon cycle in ten kinds of forest ecosystem in Guangzhou City. Chin. J. Appl. Ecol. 2009, 20, 2917–2924. [Google Scholar]
- Ye, J.S.; She, G.H. Forest carbon dynamics in Guangdong province. J. Nanjing For. Univ. 2010, 34, 7–12. [Google Scholar]
- Wang, Z.H.; Liu, H.M.; Guan, Q.W.; Wang, X.J.; Hao, J.P.; Ling, N.; Shi, C. Carbon storage and density of urban forest ecosystems in Nanjing. J. Nanjing Forestry Univ. 2011, 35, 18–22. [Google Scholar]
- Ren, Y.; Wei, X.; Wei, X.; Pan, J.; Xie, P.; Song, X.; Peng, D.; Zhao, J. Relationship between vegetation carbon storage and ur-banization: A case study of Xiamen, China. For. Ecol. Manag. 2011, 261, 1214–1223. [Google Scholar] [CrossRef]
- Houghton, R.A. Above ground forest biomass and the global carbon balance. Glob. Chang. Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- Shanghai Municipal Bureau of Agriculture and Forestry. Technical Regulations for the Construction of Ecological Public Welfare Forests in Shanghai; Shanghai Municipal Bureau of Agriculture and Forestry: Shanghai, China, 2003.
- Zhang, H.A. Measurement and analysis of carbon content rates of eight tree species in Guangdong Province. For. Resour. Manag. 2018, 1, 148–154. [Google Scholar]
- Xu, Q.H.; Lin, L.P.; Xue, C.Q.; Luo, Y.; Lei, Y.C. Component specific carbon content and storage of Cinnamomum camphora in Guangdong Province. J. Zhejiang Agri. For. Univ. 2019, 36, 70–79. [Google Scholar]
- Ma, J.Q.; Li, G.Y.; Tian, L. Comparative study on carbon rate of main afforestation tree species in Henan Province. J. Henan Agri. Sci. 2012, 41, 131–132. [Google Scholar]
- Bai, B.X.; Jiao, S.D.; Chen, D.H. The biomass and carbon fixation of 38 tree species in northern and central region of Henan Province. J. West China For. Sci. 2017, 46, 79–84. [Google Scholar]
- Fan, X.; Tian, D.L.; Fan, W.; Yang, H.Q. Carbon content of main agro-forestry tree species in the North China Plain. J. Cent. South Univ. For. Technol. 2014, 34, 85–93. [Google Scholar]
- Tang, X.; Huang, C.D.; Zhang, J.; Ning, Y.C. An Analysis of the carbon content rate in main coniferous species in Sichuan. J. Sichuan For. Sci. Technol. 2007, 02, 20–23. [Google Scholar]
- Tian, Y.Y. Research on Forest Carbon Stocks Based on Forest Resources Census in Xuzhou. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2012. [Google Scholar]
- Wang, L. Study on the Carbon Sequestration Capabilities of Common Tree Species and Communities in Main District of Chongqing City. Master’s Thesis, Southwest University, Chongqing, China, 2013. [Google Scholar]
- Tian, Y.Y.; Qin, F.; Yan, H.; Guo, W.H.; Guan, Q.W. Carbon content rate in the common woody plants of China. J. Anhui Agric. Sci. 2011, 39, 16166–16169. [Google Scholar]
- Zhang, T. Study on the Carbon Stock of Planation in the Xuyi. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2015. [Google Scholar]
- Zhu, M. Study on the Carbon Fixation Evaluate of the Green-Land System in the Xi’an ChanBa Eco-Region. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2020. [Google Scholar]
- Zhu, Y.Y. Characteristics of Structure and Carbon Storage of Greening on the Campus of Anhui Agricultural University. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2016. [Google Scholar]
- Sun, Q.X.; Yu, F.A.; Peng, Z.H. Study on poplar plantation biomass in Yangtze River beach. For. Sci. Technol. 1998, 3, 3–5. [Google Scholar]
- He, H.Z.; Huang, L.H.; Duan, X.; He, R.K. Study on biomass in main afforestation tree species of the second ring forest-belt of Guiyang. Guizhou Sci. 2007, 3, 33–39. [Google Scholar]
- Wang, Z.; Han, Y.J.; Kang, H.Z.; Huang, D.; Xue, C.Y.; Yin, S.; Liu, C.J. Carbon storage of main tree species plantations for water resources conservation in upper reaches of Huangpu River, Shanghai. Chinese J. Ecol. 2012, 31, 1930–1935. [Google Scholar]
- Zhang, X.J.; Leng, H.B.; Zhao, G.Q.; Jing, J.; Tu, A.C.; Song, K.; Da, L.J. Allometric models for estimating aboveground biomass for four common greening tree species in Shanghai City, China. J. Nanjing For. Univ. 2018, 42, 141–146. [Google Scholar]
- Lin, Q.S.; Hong, W.; Wu, C.Z.; Lin, Y.M.; Chen, C. Organic carbon storage and its dynamic change in citrus ecosystem in Yongchun, China. Acta Ecol. Sin. 2010, 30, 309–316. [Google Scholar]
Classification Scale | Number of Plots | Minimum Value (t/ha) | Maximum Value (t/ha) | Mean Value (t/ha) | SD (t/ha) | |
---|---|---|---|---|---|---|
Dominant tree species | Cinnamomum camphora | 69 | 8.8 | 67.4 | 26.2 | 14.8 |
Ligustrum lucidum | 25 | 7.5 | 20.1 | 13.3 | 4.7 | |
Sapindus saponaria | 23 | 8.5 | 52.8 | 23.3 | 12.5 | |
Metasequoia glyptostroboides | 32 | 11.8 | 68.0 | 21.7 | 17.8 | |
Taxodium distichum var. imbricatum | 21 | 4.7 | 46.2 | 17.1 | 15.0 | |
Forest type | Evergreen broad-leaved forest | 130 | 5.4 | 67.4 | 21.5 | 15.2 |
Deciduous broad-leaved forest | 106 | 3.9 | 63.2 | 19.4 | 16.9 | |
Warm coniferous forest | 72 | 3.5 | 68.0 | 18.3 | 17.4 | |
All forests | 308 | 3.5 | 68.0 | 19.9 | 16.3 |
Classification Scale | Model Name | RMSE (t/ha) | rRMSE | Bias (t/ha) | rBias | R2 | |
---|---|---|---|---|---|---|---|
(%) | (%) | ||||||
All forests | SR | 12.71 | 51.44 | 0.69 | 2.74 | 0.24 | |
ER | 11.52 | 46.08 | −0.56 | −2.23 | 0.35 | ||
MSR | 12.37 | 47.48 | 0.53 | 2.11 | 0.38 | ||
Forest type | EBLF | SR | 10.91 | 42.12 | 0.47 | 1.82 | 0.23 |
ER | 8.43 | 32.55 | 0.53 | 2.03 | 0.44 | ||
MSR | 9.62 | 36.86 | −0.32 | −1.22 | 0.53 | ||
DBLF | SR | 11.45 | 40.03 | −0.54 | −1.89 | 0.31 | |
ER | 9.09 | 31.78 | 0.28 | 0.99 | 0.42 | ||
MSR | 12.35 | 41.99 | −0.33 | −1.16 | 0.29 | ||
WCF | SR | 11.49 | 43.20 | 0.52 | 1.94 | 0.33 | |
ER | 8.35 | 31.23 | 0.34 | 1.28 | 0.47 | ||
MSR | 9.97 | 37.48 | −0.30 | −1.11 | 0.46 | ||
Dominant tree species | Cinnamomum camphora | SR | 10.93 | 30.07 | 0.41 | 1.10 | 0.39 |
ER | 9.21 | 24.53 | 0.22 | 0.64 | 0.47 | ||
MSR | 9.93 | 26.4 | −0.33 | −0.68 | 0.45 | ||
Ligustrum lucidum | SR | 5.63 | 40.85 | 0.37 | 2.67 | 0.27 | |
ER | 6.12 | 42.36 | −0.33 | −2.36 | 0.33 | ||
MSR | 4.72 | 35.80 | −0.30 | −2.17 | 0.36 | ||
Sapindus saponaria | SR | 10.73 | 43.32 | 0.54 | 2.18 | 0.35 | |
ER | 10.35 | 40.75 | 0.23 | 0.93 | 0.41 | ||
MSR | 9.08 | 35.25 | 0.55 | 1.63 | 0.39 | ||
Metasequoia glyptostroboides | SR | 10.63 | 39.7 | −0.58 | −2.18 | 0.31 | |
ER | 10.42 | 38.95 | 0.22 | 0.81 | 0.40 | ||
MSR | 7.66 | 30.54 | 0.38 | 1.41 | 0.43 | ||
Taxodium distichum var. imbricatum | SR | 10.03 | 40.49 | −0.44 | −1.97 | 0.26 | |
ER | 9.42 | 42.53 | 0.35 | 1.58 | 0.37 | ||
MSR | 7.06 | 27.94 | −0.17 | −0.78 | 0.42 |
Classification Scale | Model Name | RMSE (t/ha) | rRMSE | Bias (t/ha) | rBias | R2 | |
---|---|---|---|---|---|---|---|
(%) | (%) | ||||||
All forests | RF | 6.45 | 25.82 | −0.35 | −1.40 | 0.59 | |
NN | 10.77 | 43.08 | 0.43 | 1.72 | 0.48 | ||
DT | 10.43 | 41.72 | −0.41 | −1.62 | 0.42 | ||
Forest type | EBLF | RF | 6.32 | 23.73 | 0.11 | 0.43 | 0.77 |
NN | 7.69 | 29.69 | −0.19 | −0.74 | 0.44 | ||
DT | 8.68 | 33.51 | 0.17 | 0.64 | 0.51 | ||
DBLF | RF | 6.58 | 23.01 | 0.25 | 0.88 | 0.68 | |
NN | 10.04 | 35.12 | 0.31 | 0.92 | 0.58 | ||
DT | 5.71 | 19.97 | 0.23 | 0.81 | 0.68 | ||
WCF | RF | 5.45 | 20.49 | −0.18 | −0.68 | 0.67 | |
NN | 7.97 | 29.96 | −0.16 | −0.60 | 0.50 | ||
DT | 5.90 | 22.18 | 0.08 | 0.30 | 0.62 | ||
Dominant tree species | Cinnamomum camphora | RF | 7.06 | 18.83 | −0.15 | −0.39 | 0.75 |
NN | 7.62 | 20.32 | 0.16 | 0.41 | 0.43 | ||
DT | 8.83 | 23.55 | 0.24 | 0.63 | 0.71 | ||
Ligustrum lucidum | RF | 3.96 | 28.91 | 0.12 | 0.85 | 0.64 | |
NN | 3.15 | 23.48 | −0.16 | −1.16 | 0.52 | ||
DT | 2.62 | 19.12 | 0.07 | 0.46 | 0.65 | ||
Sapindus saponaria | RF | 7.83 | 31.58 | −0.13 | −0.54 | 0.68 | |
NN | 4.43 | 30.77 | 0.24 | 0.95 | 0.37 | ||
DT | 5.52 | 22.27 | 0.20 | 0.51 | 0.71 | ||
Metasequoia glyptostroboides | RF | 6.95 | 25.12 | 0.18 | 0.67 | 0.66 | |
NN | 5.63 | 20.97 | −0.22 | −0.81 | 0.53 | ||
DT | 4.86 | 17.98 | −0.06 | −0.23 | 0.73 | ||
Taxodium distichum var. imbricatum | RF | 6.91 | 30.63 | 0.14 | 0.62 | 0.60 | |
NN | 7.72 | 33.21 | −0.26 | −1.17 | 0.41 | ||
DT | 5.78 | 25.79 | 0.10 | 0.43 | 0.63 |
Carbon Density (t/ha) | Carbon Storage (t) | Percentage (%) | ||
---|---|---|---|---|
Area | Chongming island | 19.9 | 517,660.6 | 90.32 |
Changxing island | 10.2 | 27,825.6 | 4.86 | |
Hengsha island | 13.3 | 27,637.4 | 4.82 | |
Chongming three islands | 18.6 | 573,123.6 | 100 | |
Forest type | EBLF | 19.2 | 305,403.3 | 53.29 |
DBLF | 18.1 | 187,769.4 | 32.76 | |
WCF | 17.2 | 79,950.9 | 13.95 | |
Dominant tree species | C. camphora | 23.7 | 221,832.5 | 38.71 |
L. lucidum | 14.6 | 50,370.2 | 8.79 | |
T. distichum var. imbricatum | 17.7 | 26,904.4 | 4.69 | |
M. glyptostroboide | 19.8 | 46,728.8 | 8.15 | |
S. saponaria | 20.5 | 45,715.0 | 7.98 | |
Total amount | 391,550.9 | 68.32 |
Urban Region | Carbon Density (t/ha) | Reference |
---|---|---|
Chongming eco-island (three islands) | 18.6 | This study |
Chongming island | 19.9 | |
Changxing island | 10.2 | |
Hengsha island | 13.3 | |
Chongming three islands | 18.9 | [11] |
Shanghai District | 21.2 | [11] |
Hangzhou | 16.5 | [44] |
Ganzhou | 25.6 | [45] |
Xi’an | 20.8 | [46] |
Chengdu | 19.9 | [47] |
Guangzhou | 24.7 | [48] |
Shenzhen | 24.6 | [49] |
Nanjing | 16.9 | [50] |
Xiamen | 15.1 | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Song, T.; Shi, R.; Hou, Z.; Wu, N.; Zhang, H.; Zhuo, W. Estimating the Forest Carbon Storage of Chongming Eco-Island, China, Using Multisource Remotely Sensed Data. Remote Sens. 2023, 15, 1575. https://doi.org/10.3390/rs15061575
Zhang C, Song T, Shi R, Hou Z, Wu N, Zhang H, Zhuo W. Estimating the Forest Carbon Storage of Chongming Eco-Island, China, Using Multisource Remotely Sensed Data. Remote Sensing. 2023; 15(6):1575. https://doi.org/10.3390/rs15061575
Chicago/Turabian StyleZhang, Chao, Tongtong Song, Runhe Shi, Zhengyang Hou, Nan Wu, Han Zhang, and Wei Zhuo. 2023. "Estimating the Forest Carbon Storage of Chongming Eco-Island, China, Using Multisource Remotely Sensed Data" Remote Sensing 15, no. 6: 1575. https://doi.org/10.3390/rs15061575
APA StyleZhang, C., Song, T., Shi, R., Hou, Z., Wu, N., Zhang, H., & Zhuo, W. (2023). Estimating the Forest Carbon Storage of Chongming Eco-Island, China, Using Multisource Remotely Sensed Data. Remote Sensing, 15(6), 1575. https://doi.org/10.3390/rs15061575