Landsat-Based Assessment of Morphological Changes along the Sinai Mediterranean Coast between 1990 and 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Coastline Delineation
2.3.2. Uncertainty Estimation of the Extracted Coastlines
2.3.3. Coastline Change Analysis
2.3.4. Classification of Shoreline Erosion
3. Results
3.1. Rate of Coastline Change between 1990 and 2020
3.2. Assessment of Zonal Coastal Change
3.2.1. El Tienah Plain Coast (TPC)
3.2.2. The Bardaweil Lagoon Barrier Coast (BLBC)
3.2.3. Arish Valley Coast (AVC)
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Liu, Y.; Ling, F.; Liu, Y.; Fang, F. Spatial-Temporal Change Detection of Ningbo Coastline Using Landsat Time-Series Images during 1976–2015. ISPRS Int. J. Geo-Inf. 2017, 6, 68. [Google Scholar] [CrossRef] [Green Version]
- Kermani, S.; Boutiba, M.; Guendouz, M.; Guettouche, M.; Khalfan, D. Detection and analysis of shoreline changes using geospatial tools and automatic computation: Case of Jijelian sandy coast (East Algeria). Ocean Coast. Manag. 2016, 132, 46–58. [Google Scholar] [CrossRef]
- Zhang, Y. Coastal environmental monitoring using remotely sensed data and GIS techniques in the Modern Yellow River delta. Env. Monit Assess 2011, 179, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Sheng, H.; Fan, H.; Nazir, S.; Niang, A.; Salauddin, M.; Khan, S. Automatic Coastline Extraction and Changes Analysis Using Remote Sensing and GIS Technology. IEEE Access 2020, 8, 180156–180170. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.; Almonacid-Caballer, J.; Ruiz, L.; Palomar-Vázquez, J. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens. Environ. 2012, 123, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Toure, S.; Diop, O.; Kpalma, K.; Maiga, A. Shoreline Detection using Optical Remote Sensing: A Review. ISPRS Int. J. Geo-Inf. 2019, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- McFeeters, S. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425. [Google Scholar] [CrossRef]
- Jain, S.; Singh, R.; Jain, M.; Lohani, A. Delineation of Flood-Prone Areas Using Remote Sensing Techniques. Water Resour. Manag. 2005, 19, 333–347. [Google Scholar] [CrossRef]
- Hui, F.; Xu, B.; Huang, H.; Yu, Q.; Gong, P. Modelling spatial-temporal change of Poyang Lake using Multitemporal Landsat imagery. Int. J. Remote Sens. 2008, 29, 5767–5784. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Frihy, O.; Lotfy, M. Shoreline changes and beach-sand sorting along the northern Sinai coast of Egypt. Geo-Mar. Letters. 1997, 17, 140–146. [Google Scholar] [CrossRef]
- Frihy, O.; Badr, A.; Selim, M.; El Sayed, W. Environmental Impacts of El Arish Power Plant on the Mediterranean Coast of Sinai, Egypt. Environ. Geology. 2002, 42, 604–611. [Google Scholar]
- Azab, M.; Noor, A. Change Detection of the North Sinai Coast by Using Remote Sensing and Geographic Information System. Geogr. Technica. 2007, 2003, 2–10. [Google Scholar]
- El Banna, M.; Herher, M. Detecting temporal shoreline changes and erosion/accretion rates, using remote sensing, and their associated sediment characteristics along the coast of North Sinai, Egypt. J. Environ. Geol. 2009, 8, 1419–1427. [Google Scholar] [CrossRef]
- Nassar, K.; Mahmod, W.; Fath, H.; Masria, A.; Nadaoka, K.; Negm, A. Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Mar. Georesources Geotechnol. 2019, 37, 81–95. [Google Scholar] [CrossRef]
- Nassar, K.; Fath, H.; Mahmod, W.E.; Masria, A.; Nadaoka, K.; Negm, A. Automatic detection of shoreline change: Case of North Sinai coast, Egypt. J. Coast. Conserv. 2018, 22, 1057–1083. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef] [Green Version]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Tang, W.; Zhao, C.; Lin, J.; Jiao, C.; Zheng, G.; Zhu, J.; Pan, X.; Han, X. Improved Spectral Water Index Combined with Otsu Algorithm to Extract Muddy Coastline Data. Water 2022, 14, 855. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Yang, C.; Yan, W.; Dai, Y.; Xu, P.; Zhu, C. Historical Coastline Spatial-temporal Evolution Analysis in Jiangsu Coastal Area During the Past 1000 Years. Sci. Geogr. Sin. 2014, 34, 344–351. [Google Scholar]
- Zhang, J.; Lai, Z.; Sun, J. Coastline extraction of remote sensing image by combining Otsu, regional growth method with morphology. Bull. Surv. Mapp. 2020, 10, 89–92. [Google Scholar]
- Darwish, K.; Smith, S.; Torab, M.; Monsef, H.; Hussein, O. Geomorphological changes along the Nile Delta coastline between 1945 and 2015 detected using satellite remote sensing and GIS. J. Coast. Res. 2017, 33, 786–794. [Google Scholar] [CrossRef]
- Atiquzzaman, M.; Kandasamy, J. Prediction of hydrological time-series using extreme learning machine. J. Hydroinf. 2015, 18, 345–353. [Google Scholar] [CrossRef]
- Oyedotun, T. Shoreline Geometry: DSAS as a Tool for Historical Trend Analysis. Geomorphol Technol. 2014, 3, 1–12. [Google Scholar]
- Das, S.; Sajan, B.; Ojha, C.; Soren, S. Shoreline change behavior study of Jambudwip island of Indian Sundarban using DSAS model. Egypt. J. Remote Sens. Space Sci. 2021, 24, 961–970. [Google Scholar]
- Natesan, U.; Parthasarathy, A.; Vishnunath, R.; Kumar, G.; Ferer, V. Monitoring long term shoreline changes along Tamil Nadu, India using geospatial techniques. Aquat. Procedia 2015, 4, 325–332. [Google Scholar] [CrossRef]
- Frihy, O.E.; Fanos, A.M.; Khafagy, A.A.; Komar, P.D. Patterns of nearshore sediment transport along the Nile Delta, Egypt. Coast. Eng. 1991, 15, 409–429. [Google Scholar] [CrossRef]
- Abu Zed, A.A.; Soliman, M.R.; Yassin, A.A. Evaluation of using satellite image in detecting long term shoreline change along El-Arish coastal zone, Egypt. Alex. Eng. J. 2018, 57, 2687–2702. [Google Scholar] [CrossRef]
Acquisition Date | Satellite/Sensor |
---|---|
25 May 1990 | Landsat-5/TM |
16 May 1990 | Landsat-5/TM |
24 June 1995 | Landsat-5/TM |
1 July 1995 | Landsat-5/TM |
31 July 2000 | Landsat-7/ETM+ |
22 July 2000 | Landsat-7/ETM+ |
19 June 2005 | Landsat-5/TM |
12 July 2005 | Landsat-5/TM |
17 June 2010 | Landsat-5/TM |
14 October 2010 | Landsat-5/TM |
19 September 2015 | Landsat-8/OLI/TIRS |
24 July 2015 | Landsat-8/OLI/TIRS |
12 June 2020 | Landsat-8/OLI/TIRS |
10 September 2020 | Landsat-8/OLI/TIRS |
Type of the Error | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|---|
Error of Pixel (Ep) | ±30 m | ±30 m | ±30 m | ±30 m | ±30 m | ±30 m | ±30 m |
RMSE of Orthorectification (Eg) | ±12.16 | ±11.51 | ±5.73 | ±6.04 | ±4.72 | ±4.16 | ±7.86 |
Error of Tidal range (Ev) | ±40 cm | ±41 cm | ±40 cm | ±40 cm | ±40 cm | ±40 cm | ±40 cm |
Error of Extraction (Ex) | ±26.10 m | ±26.10 m | ±26.10 m | ±26.10 m | ±26.10 m | ±26.10 m | ±26.10 m |
Total error (Ut) | ±41.59 | ±41.40 | ±40.18 | ±40.22 | ±40.05 | ±39.98 | ±40.54 |
Annual error during 1990–2020 (Ua) | ±3.31 m/yr. | ||||||
ECI period interval (m/yr.) | 1990–2020 ± 1.94 m/yr. |
Class | Annualized Coastline Change Rate (m/yr.) | Hazard Degree |
---|---|---|
1 | >−2 | Severe erosion |
2 | >−1 to <−2 | High erosion |
3 | >0 to <−1 | Medium erosion |
4 | 0 | Stable |
5 | >0 to <+1 | Medium accretion |
6 | >+1 to <+2 | High accretion |
7 | >+2 | Severe accretion |
Coastal Zone | Coastline Change | Statistical Parameters | 1990– 1995 | 1995– 2000 | 2000– 2005 | 2005– 2010 | 2010– 2015 | 2015– 2020 | Global Period |
---|---|---|---|---|---|---|---|---|---|
Zone I El Tienah Plain Coast 360 Transects | Erosion Accretion | Min EPR (m/year) Average EPR (m/year) Min NSM (m) % of Transects Max EPR (m/year) Average EPR (m/year) Max NSM (m) % of Transects | −29.98 −8.19 −153.67 52.22 +62.92 +6.89 +322.54 47.22 | −69.88 −9.09 −353.61 42.78 +25.78 +6.09 +130.47 54.72 | −38.27 −11.67 −190.18 50.56 +42.58 +7.59 +211.63 48.33 | −33.86 −8.29 −178.01 41.94 +39.41 +7.97 +207.18 57.78 | −47.89 −11.91 −228.67 53.33 +43.17 +6.62 +206.17 41.94 | −31.08 −9.49 −162.03 50.00 56.89 +7.03 296.59 42.78 | −18.22 −7.67 −553.9 43.06 +17.83 +4.54 +542.09 52.22 |
Zone II Bardaweil Lagoon Coast 845 Transects | Erosion Accretion | Min EPR (m/year) Average EPR (m/year) Min NSM(m) % of Transects Max EPR (m/year) Average EPR (m/year) Max NSM (m) % of Transects | −33.08 −5.39 −168.11 36.33 +36.33 +4.63 +184.64 63.55 | −29.8 −3.50 −152.12 40.95 +87.58 +4.50 +447.01 55.98 | −29.1 −5.02 −142.08 78.58 +29.05 +4.35 +141.83 20.36 | −29.94 −3.32 −149.54 47.10 +40.41 +3.97 +201.81 49.47 | −23.46 −4.18 −123.36 48.64 +20.04 +2.65 +105.38 51.60 | −22.32 −5.40 −105.63 86.63 +30.99 +5.39 +146.66 12.78 | −9.47 −2.14 −284.64 69.70 +15.03 +2.02 +451.56 29.59 |
Zone III Arish Valley Coast 766 Transects | Erosion Accretion | Min EPR (m/year) Average EPR (m/year) Min NSM (m) % of Transects Max EPR (m/year) Average EPR (m/year) Max NSM (m) % of Transects | −16.26 −2.76 −82.66 32.11 +23.45 +2.96 +119.16 67.89 | −17.8 −1.47 −90.83 35.25 +22.30 +2.89 +113.83 64.62 | −14.89 −2.97 −72.7 80.81 +11.51 +1.59 +56.21 16.45 | −14.41 −2.66 −71.95 34.20 +14.43 +2.56 +72.08 63.84 | −11.48 −2.08 −60.35 43.60 +74.59 +3.05 +392.12 49.48 | −22.78 −3.34 −107.78 82.11 +26.37 +2.79 +124.8 15.80 | −5.06 −0.99 −152.06 55.35 +12.23 +1.13 +367.43 44.52 |
Overall | Erosion Accretion | Min EPR (m/year) Average EPR (m/year) Min NSM (m) % of Transects Max EPR (m/year) Average EPR (m/year) Max NSM (m) % of Transects | −33.08 −5.23 −168.11 37.61 +62.92 +4.25 +322.54 62.03 | −69.88 −3.90 −353.61 39.09 +87.58 +4.09 +447.01 59.14 | −38.27 −4.97 −190.18 74.37 +42.58 +4.80 +211.63 23.96 | −33.86 −4.03 −178.01 41.17 +40.41 +3.94 +207.18 58.88 | −47.89 −4.99 −228.67 47.56 +74.59 +3.49 +392.12 48.17 | −31.08 −5.03 −162.03 78.22 +56.89 +5.23 +296.59 19.44 | −18.22 −2.46 −553.9 59.29 +17.83 +2.31 +542.09 38.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darwish, K.; Smith, S. Landsat-Based Assessment of Morphological Changes along the Sinai Mediterranean Coast between 1990 and 2020. Remote Sens. 2023, 15, 1392. https://doi.org/10.3390/rs15051392
Darwish K, Smith S. Landsat-Based Assessment of Morphological Changes along the Sinai Mediterranean Coast between 1990 and 2020. Remote Sensing. 2023; 15(5):1392. https://doi.org/10.3390/rs15051392
Chicago/Turabian StyleDarwish, Kamal, and Scot Smith. 2023. "Landsat-Based Assessment of Morphological Changes along the Sinai Mediterranean Coast between 1990 and 2020" Remote Sensing 15, no. 5: 1392. https://doi.org/10.3390/rs15051392
APA StyleDarwish, K., & Smith, S. (2023). Landsat-Based Assessment of Morphological Changes along the Sinai Mediterranean Coast between 1990 and 2020. Remote Sensing, 15(5), 1392. https://doi.org/10.3390/rs15051392