Construction and Analysis of Ecological Security Patterns in the Southern Anhui Region of China from a Circuit Theory Perspective
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Sources and Pre-Processing
3. Research Methodology
3.1. Research Framework
3.2. Ecosystem Services
3.2.1. Habitat Quality
3.2.2. Soil Retention
3.2.3. Water Yield
3.2.4. Carbon Fixation
3.3. Ecological Sensitivity Assessment
3.4. Landscape Resistance Surfaces
3.5. Regional Ecological Safety Pattern
4. Results
4.1. Spatial Patterns of Ecosystem Services
4.2. Spatial Pattern Analysis of Eco-Environmental Sensitivity
4.3. Ecological Source Site Construction
4.4. Analysis of Circuit Theory Results
4.5. Ecological Safety Pattern Construction
5. Discussion
5.1. Ecological Restoration Strategies for Key Areas
5.2. Threshold for Broadband of Species Migration Corridors
5.3. Research Gaps and Outlook
6. Conclusions
- (1)
- The high value areas for the four types of ecosystem services in southern Anhui were mainly concentrated in Huangshan City, and there were trade-offs between the four types of ecosystem services. The areas with high ecological sensitivity in the study area were mainly dotted in the territory of Huangshan City, while the ecological sensitivity in Wuhu and Xuancheng was low.
- (2)
- The ecological safety pattern of the southern Anhui region consisted of an ecological source dominated by woodlands and radiating ecological corridors distributed along the mountains and forests. The main ecological source sites and corridors were located in the southwestern part of the study area.
- (3)
- The ecological safety pattern in the study area consisted of 63 ecological sources, 37 important corridors, and 26 potential corridors, of which there were 28 pinch point areas and 6 barrier point patches in the study area.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Cai, J.; Li, X.; Liu, L.; Chen, Y.; Wang, X.; Lu, S. Coupling and coordinated development of new urbanization and agro-ecological environment in China. Sci. Total Environ. 2021, 776, 145837. [Google Scholar] [CrossRef]
- Shi, T.; Yang, S.; Zhang, W.; Zhou, Q. Coupling coordination degree measurement and spatiotemporal heterogeneity between economic development and ecological environment—Empirical evidence from tropical and subtropical regions of China. J. Clean. Prod. 2020, 244, 118739. [Google Scholar] [CrossRef]
- Dai, X.; Wang, L.; Yang, L.; Wang, S.; Li, Y.; Wang, L. Predicting the supply-demand of ecosystem services in the Yangtze River Middle Reaches Urban Agglomeration. Prog. Phys. Geogr. Earth Environ. 2022, 46, 530–546. [Google Scholar] [CrossRef]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Dai, X.; Wang, L.; Tao, M.; Huang, C.; Sun, J.; Wang, S. Assessing the ecological balance between supply and demand of blue-green infrastructure. J. Environ. Manag. 2021, 288, 112454. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.n.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Nathwani, J.; Lu, X.; Wu, C.; Fu, G.; Qin, X. Quantifying security and resilience of Chinese coastal urban ecosystems. Sci. Total Environ. 2019, 672, 51–60. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Y.; Zheng, F. Research on recognition and protection of ecological security patterns based on circuit theory: A case study of Jinan City. Environ. Sci. Pollut. Res. 2020, 27, 12414–12427. [Google Scholar] [CrossRef]
- He, J.; Pan, Y.; Liu, D. Analysis of the wetland ecological pattern in Wuhan City from the perspective of ecological network. Acta Ecol. Sin. 2020, 40, 3590–3601. [Google Scholar]
- Wang, G.; Yu, Q.; Yang, D.; Zhang, Q.; Yue, D.; Liu, J. Hierarchical Ecological Network Structure Based on Complex Network Analysis. Trans. Chin. Soc. Agric. Mach. 2019, 50, 258–266,312. [Google Scholar]
- Zheng, Q.; Zeng, J.; Luo, J.; Cui, J.; Sun, X. Spatial Structure and Space Governance of Ecological Network in Wuhan City. Econ. Geogr. 2018, 38, 191–199. [Google Scholar]
- Baguette, M.; Blanchet, S.; Legrand, D.; Stevens, V.M.; Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 2013, 88, 310–326. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Li, D.; Zhang, L.; Wang, G.; Gao, Y.; Yang, C.; Feng, C.; Ma, H. Importance Evaluation of Ecosystem Services and Construction of Ecological Security Pattern in Qinba Mountain Area. Strateg. Study CAE 2020, 22, 64–72. [Google Scholar] [CrossRef]
- Cong, Z.; Sun, Y.; Xie, G.; Peng, Q. Study on the evolution of ecological network in Haikou coastal zone. Acta Ecol. Sin. 2020, 40, 1044–1054. [Google Scholar]
- Chi, Y.; Xie, Z.; Wang, J. Establishing archipelagic landscape ecological network with full connectivity at dual spatial scales. Ecol. Model. 2019, 399, 54–65. [Google Scholar] [CrossRef]
- Zhuge, H.; Lin, D.; Li, X. Identification of ecological corridors for Tibetan antelope and assessment of their human disturbances in the alpine desert of Qinghai-Tibet Plateau. Chin. J. Appl. Ecol. 2015, 26, 2504–2510. [Google Scholar]
- Zeller, K.A.; McGarigal, K.; Whiteley, A.R. Estimating landscape resistance to movement: A review. Landsc. Ecol. 2012, 27, 777–797. [Google Scholar] [CrossRef]
- Streicher, J.W.; Loader, S.P.; Varela-Jaramillo, A.; Montoya, P.; de Sa, R.O. Analysis of ultraconserved elements supports African origins of narrow-mouthed frogs. Mol. Phylogenetics Evol. 2020, 146, 106771. [Google Scholar] [CrossRef]
- Schroeter, M.; Kraemer, R.; Remme, R.P.; van Oudenhoven, A.P.E. Distant regions underpin interregional flows of cultural ecosystem services provided by birds and mammals. Ambio 2020, 49, 1100–1113. [Google Scholar] [CrossRef]
- Mirasole, A.; Signa, G.; Gianguzza, P.; Bonaviri, C.; Mazzola, A.; Vizzini, S. Fish assemblages cope with ocean acidification in a shallow volcanic CO2 vent benefiting from an adjacent recovery area. Mar. Environ. Res. 2020, 157, 104851. [Google Scholar] [CrossRef]
- Chen, Q.; Li, M.; Wang, X.; Faisal, M.Q.; Wang, P.; Yang, J.; Wang, M.; Yang, W. Identification of potential ecological corridors for Marco Polo sheep in Taxkorgan Wildlife Nature Reserve, Xinjiang, China. Biodivers. Sci. 2019, 27, 186–199. [Google Scholar]
- Gu, X.; Long, A.; Liu, G.; Yu, J.; Wang, H.; Yang, Y.; Zhang, P. Changes in Ecosystem Service Value in the 1 km Lakeshore Zone of Poyang Lake from 1980 to 2020. Land 2021, 10, 951. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Shen, C.Z.; Jin, X.B.; Bao, G.Y.; Liu, J.; Zhou, Y.K. Developing and optimizing ecological networks based on MSPA and MCR model. Ecol. Sci. 2019, 38, 138–145. [Google Scholar]
- Huang, M.Y.; Yue, W.Z.; Feng, S.R.; Cai, J. Analysis of spatial heterogeneity of ecological security based on MCR model and ecological pattern optimization in the Yuexi county of the Dabie Mountain Area. J. Nat. Resour. 2019, 34, 771–784. [Google Scholar] [CrossRef]
- Dequan, C.; Zeying, L.; Weiqi, L. Construction of Land Ecological Security in Guangdong Province From the Perspective of Ecological Demand. J. Ecol. Rural Environ. 2019, 35, 826–835. [Google Scholar]
- Shan, N.; Zhou, K.X.; Pan, Y.; Tang, F. Research advances in design methods of biodiversity conservation corridors. Acta Ecol. Sin. 2019, 39, 411–420. [Google Scholar]
- Sun, F.; Zhang, J.H.; Wang, P.J.; Wei, G.; Chu, G.; Cao, Y. Construction and evaluation of urban ecological security pattern: A case study of Suzhou city. Geogr. Res. 2021, 40, 2476–2493. [Google Scholar]
- Dickson, B.G.; Albano, C.M.; Anantharaman, R.; Beier, P.; Fargione, J.; Graves, T.A.; Gray, M.E.; Hall, K.R.; Lawler, J.J.; Leonard, P.B.; et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 2019, 33, 239–249. [Google Scholar] [CrossRef]
- Chen, N.; Qin, F.; Zhai, Y.; Cao, H.; Zhang, R.; Cao, F. Evaluation of coordinated development of forestry management efficiency and forest ecological security: A spatiotemporal empirical study based on China’s provinces. J. Clean. Prod. 2020, 260, 121042. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, X.; Du, S.; Li, C.; Siu, Y.L.; Rong, Y.; Yang, H. The impact of onshore wind power projects on ecological corridors and landscape connectivity in Shanxi, China. J. Clean. Prod. 2020, 254, 120075. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Jin, X.B.; Shen, C.Z.; Bao, G.Y.; Liu, J.; Zhou, Y.K. Establishment of an ecological security pattern in the eastern developed regions: A case study of the Sunan District. Acta Ecol. Sin. 2019, 39, 2298–2310. [Google Scholar]
- Qiu, S.; Wang, Y.; Wang, P.; Lin, C. Construction of urban ecological security pattern and construction land development based on MCR Model. Trans. Chin. Soc. Agric. Eng. 2018, 34, 257–265. [Google Scholar]
- Huang, M.Y.; Yue, W.Z.; Feng, S.R.; Zhang, J.H. Spatial-temporal evolution of habitat quality and analysis of landscape patterns in Dabie Mountain area of west Anhui province based on InVEST model. Acta Ecol. Sin. 2020, 40, 2895–2906. [Google Scholar]
- Zhang, R.; Zhang, L.; Zhong, Q.; Zhang, Q.; Ji, Y.; Song, P.; Wang, Q. An optimized evaluation method of an urban ecological network: The case of the Minhang District of Shanghai. Urban For. Urban Green. 2021, 62, 127158. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Z.; Zhong, Q.; Zhang, Q.; Zhang, L.; Zhang, R.; Yi, Y.; Zhang, G.; Li, X.; Liu, J. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA. Ecol. Indic. 2022, 142, 109258. [Google Scholar] [CrossRef]
- Hudson, A.R.; Peters, D.P.C.; Blair, J.M.; Childers, D.L.; Doran, P.T.; Geil, K.; Gooseff, M.; Gross, K.L.; Haddad, N.M.; Pastore, M.A.; et al. Cross-Site Comparisons of Dryland Ecosystem Response to Climate Change in the US Long-Term Ecological Research Network. Bioscience 2022, 72, 889–907. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Fu, M.; Wei, L.; Han, Y.; Shi, N.; Li, J.; Quan, Z. Urban ecological security pattern based on source-sink landscape theory and MCR model: A case study of Ningguo City, Anhui Province. Acta Sci. Circumstantiae 2016, 36, 4546–4554. [Google Scholar]
- Li, S.; Xiao, W.; Zhao, Y.; Lv, X. Incorporating ecological risk index in the multi-process MCRE model to optimize the ecological security pattern in a semi-arid area with intensive coal mining: A case study in northern China. J. Clean. Prod. 2020, 247, 119143. [Google Scholar] [CrossRef]
- Li, Z.-T.; Li, M.; Xia, B.-C. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation. Ecol. Indic. 2020, 114, 106319. [Google Scholar] [CrossRef]
- Ni, Q.L.; Hou, H.P.; Ding, Z.Y.; Li, Y.B.; Li, J.R. Ecological remediation zoning of territory based on the ecological security pattern recognition: Taking Jiawang district of Xuzhou city as an example. J. Nat. Resour. 2020, 35, 204–216. [Google Scholar]
- Wang, H.; Li, H.; Xie, M.; Xu, M.; Li, S.; Bai, Z. Construction of ecological security pattern for systematic restoration of industrial and mining land in resource-based cities. J. Nat. Resour. 2020, 35, 162–173. [Google Scholar]
- Ren, H.; Zhang, J.J.; Zhu, W.B.; Wang, L.; Zhang, L.; Zhu, L. Impact of land use change on habitat in the Qihe River Basin of Taihang Mountains. Prog. Geogr. 2018, 37, 1693–1704. [Google Scholar]
- Jiang, Y.; Gao, J.; Yang, L.; Wu, S.; Dai, E. The interactive effects of elevation, precipitation and lithology on karst rainfall and runoff erosivity. Catena 2021, 207, 105588. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, Q.; Wang, C.; Zhang, X.; Liu, B.; Wei, X.; Pang, G.; Li, Y.; Tu, X. Sampling Survey Method of Regional Soil Erosion Based on Remote Sensing Images. J. Soil Water Conserv. 2019, 33, 64–71. [Google Scholar]
- Liu, B.T.; Tao, H.P.; Shi, Z.; Song, C.F.; Guo, B. Spatial Distribution Characteristics of Soil Erodibility K Value in Qinghai-Tibet Plateau. Bull. Soil Water Conserv. 2014, 34, 13–16. [Google Scholar]
- Liu, B.; Tao, H.; Song, C.; Guo, B.; Shi, Z. Study on annual variation of rainfall erosivity in southwest China using gravity center model. Trans. Chin. Soc. Agric. Eng. 2012, 28, 113–120. [Google Scholar]
- Song, C.F.; Tao, H.P.; Liu, B.T.; Shi, Z.; Guo, B.; Hua, J. Spatial Distribution Characteristics of Soil Erodibility K Value in the Upper Yangtze River. Resour. Environ. Yangtze Basin 2012, 21, 1123–1130. [Google Scholar]
- Zhang, D.; Qu, L.P.; Zhang, J.H. Ecological security pattern construction method based on the perspective of ecological supply and demand: A case study of Yangtze River Delta. Acta Ecol. Sin. 2019, 39, 7525–7537. [Google Scholar]
- Jia, K.; Zhang, C.; Yang, Y.; You, Z. Delimitation of Urban Growth Boundary Based on the Coordination of Ecology and Residential Activity Spaces: A Case Study of Jinan, China. J. Resour. Ecol. 2019, 10, 518–524. [Google Scholar]
- Wang, Y.; Zhou, C. Landscape Ecological Security Pattern in Central Guizhou Urban Agglomeration. J. Ecol. Rural Environ. 2019, 35, 1111–1117. [Google Scholar]
- Dai, X.; Li, Z.; Lin, S.; Xu, W. Assessment and zoning of eco-environmental sensitivity for a typical developing province in China. Stoch. Environ. Res. Risk Assess. 2012, 26, 1095–1107. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Zhang, L.; Sun, K.; Cao, W. Simulation effects of clean water corridor technology on the control of non-point source pollution in the Paihe River basin, Chaohu lake. Environ. Sci. Pollut. Res. 2021, 28, 23534–23546. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.J.; Hu, Y.; Li, J.L.; Jiang, D. Construction of ecological security pattern based on Pressure-state-response model in Linquan county of Anhui Province. J. Anhui Agric. Univ. 2020, 47, 538–546. [Google Scholar]
- Yu, H.; Gu, X.; Liu, G.; Fan, X.; Zhao, Q.; Zhang, Q. Construction of Regional Ecological Security Patterns Based on Multi-Criteria Decision Making and Circuit Theory. Remote Sens. 2022, 14, 527. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Chu, J. The Construction of a Regional Ecological Security Pattern Based on Circuit Theory. Sustainability 2019, 11, 6343. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Yu, K.J.; Li, D.H. The width of ecological corridor in landscape planning. Acta Ecol. Sin. 2005, 25, 2406–2412. [Google Scholar]
Data | Source | Spatial Resolution | Data Use |
---|---|---|---|
DEM | Geospatial Data Cloud | 30 m | LS factors, ecological sensitivity calculations |
Anhui Provincial Statistical Yearbook, Nature Reserve Location | Anhui Provincial Department of Statistics | - | Regional profile |
China 1:1 million soil database Data | Centre for Resource and Environmental Sciences, Chinese Academy of Sciences | 1000 m | Soil retention calculation |
30 m resolution land use data of southern Anhui Province Data | Center for Resource and Environmental Sciences, Chinese Academy of Sciences | 30 m | Calculation of habitat quality, ecological sensitivity |
Evapotranspiration data | Worldclim | 1 km | Water conservation calculations |
Annual NDVI data | Center for Resource and Environmental Sciences, Chinese Academy of Sciences | 30 m | Ecological sensitivity calculations |
MODIS_NPP dataset | International Science Service Platform | 250 m | Calculation of carbon sequestration and oxygen release |
Climate data | China Meteorological Network | - | Soil retention calculation |
Evaluation Factors | Sensitivity Values | Weights | ||||
---|---|---|---|---|---|---|
9 | 7 | 5 | 3 | 1 | ||
NDVI | >0.75 | (0.65, 0.75] | (0.50, 0.65] | (0.35, 0.50] | ≤0.35 | 0.20 |
Elevation (m) | ≤500 | (500, 1000] | (1000, 1500] | (1500, 2000] | >2000 | 0.15 |
Slope (°) | ≤5 | (5, 10] | (10, 15] | (15, 25] | >25 | 0.15 |
Land use | Forestland, waters | Grassland | Cropland | Bare land | Constructions | 0.20 |
Soil erosion (t/ha) | extremely sensitive | highly sensitive | moderately sensitive | mildly sensitive | not sensitive | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, X.; Yu, H.; Liu, G.; Zhang, X.; Feng, Y.; Ji, Y.; Zhao, Q.; Jiang, J.; Gu, X. Construction and Analysis of Ecological Security Patterns in the Southern Anhui Region of China from a Circuit Theory Perspective. Remote Sens. 2023, 15, 1385. https://doi.org/10.3390/rs15051385
Lai X, Yu H, Liu G, Zhang X, Feng Y, Ji Y, Zhao Q, Jiang J, Gu X. Construction and Analysis of Ecological Security Patterns in the Southern Anhui Region of China from a Circuit Theory Perspective. Remote Sensing. 2023; 15(5):1385. https://doi.org/10.3390/rs15051385
Chicago/Turabian StyleLai, Xiaoying, Haoran Yu, Guihua Liu, Xiangxue Zhang, Yu Feng, Yiwen Ji, Qi Zhao, Junyi Jiang, and Xinchen Gu. 2023. "Construction and Analysis of Ecological Security Patterns in the Southern Anhui Region of China from a Circuit Theory Perspective" Remote Sensing 15, no. 5: 1385. https://doi.org/10.3390/rs15051385
APA StyleLai, X., Yu, H., Liu, G., Zhang, X., Feng, Y., Ji, Y., Zhao, Q., Jiang, J., & Gu, X. (2023). Construction and Analysis of Ecological Security Patterns in the Southern Anhui Region of China from a Circuit Theory Perspective. Remote Sensing, 15(5), 1385. https://doi.org/10.3390/rs15051385