Brightness Temperature and Wet Tropospheric Correction of HY-2C Calibration Microwave Radiometer Using Model-Derived Wet Troposphere Path Delay from ECMWF
Abstract
:1. Introduction
2. Principle from Antenna Temperature to Model-Derived WTC
2.1. From Antenna Temperature to Main-Lobe Brightness Temperature
2.2. From Antenna Temperature to Model-Derived WTC
3. Assessment of HY-2C CMR Brightness Temperatures
4. Assessment of HY-2C CMR Wet Troposphere Corrections
4.1. Comparison with the WTC of Jason-3 AMR-2
4.2. Comparison with Model-Derived WTC from ECMWF
4.3. Comparison of the Standard Deviation of the SSH Difference at Crossover Points
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, X.; Liu, X.Y.; Zhu, J.; Chen, C.; Wang, H.; Zhai, W. Intercomparison and Anomaly Analysis of WET Tropospheric Corrections from Jason-3 and Saral. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar] [CrossRef]
- Vieira, E.; Lázaro, C.; Fernandes, J. Spatio-temporal variability of the wet component of the troposphere Application to satellite altimetry. Adv. Space Res. 2019, 63, 1737–1753. [Google Scholar] [CrossRef] [Green Version]
- Bennartz, R.; Höschen, H.; Picard, B.; Schröder, M.; Stengel, M.; Sus, O.; Bojkov, B.; Casadio, S.; Diedrich, H.; Eliasson, S.; et al. An intercalibrated dataset of total column water vapour and wet tropospheric correction based on MWR on board ERS-1, ERS-2, and Envisat. Atmos. Meas. Tech. 2017, 10, 1387–1402. [Google Scholar] [CrossRef]
- Eymard, L.; Obligis, E. The Altimetric Wet Tropospheric Correction: Progress since the ERS-1 Mission. Proc. Symp. Years Prog. Radar Altimetry 2006, 614, 1387–2017. [Google Scholar]
- Brown, S.T.; Desai, S.; Lu, W.; Tanner, A. On the Long-Term Stability of Microwave Radiometers Using Noise Diodes for Calibration. IEEE Trans. Geosci. Remote. Sens. 2007, 45, 1908–1920. [Google Scholar] [CrossRef]
- Maiwald, F.; Montes, O.; Padmanabhan, S.; Michaels, D.; Iyakara, A.K.; Jarnot, R.; Brown, S.T.; Dawson, D.; Wu, A.; Hatch, W.; et al. Reliable and Stable Radiometers for Jason-3. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2016, 9, 2754–2762. [Google Scholar] [CrossRef]
- Lázaro, M.Á.P.; Pujades, M.B.; Sola, R.G.; Coto, A.G.; Fernández, J.L.G.; Camacho, Y. Design, development and calibration of the MWR microwave radiometer on board Sentinel-3. In Proceedings of the 2014 44th European Microwave Conference, Rome, Italy, 6–9 October 2014; pp. 1671–1674. [Google Scholar] [CrossRef]
- Frery, M.-L.; Siméon, M.; Goldstein, C.; Féménias, P.; Borde, F.; Houpert, A.; Garcia, A.O. Sentinel-3 Microwave Radiometers: Instrument Description, Calibration and Geophysical Products Performances. Remote. Sens. 2020, 12, 2590. [Google Scholar] [CrossRef]
- Donlon, C.J.; Cullen, R.; Giulicchi, L.; Vuilleumier, P.; Francis, C.R.; Kuschnerus, M.; Simpson, W.; Bouridah, A.; Caleno, M.; Bertoni, R.; et al. The Copernicus Sentinel-6 mission: Enhanced continuity of satellite sea level measurements from space. Remote. Sens. Environ. 2021, 258, 112395. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, D.; Li, Y.; Zhao, J. Prelaunch calibration and primary results from in-orbit calibration of the atmospheric correction microwave radiometer (ACMR) on the HY-2A satellite of China. Int. J. Remote. Sens. 2014, 35, 4496–4514. [Google Scholar] [CrossRef]
- Vieira, T.; Fernandes, M.J.; Lazaro, C. Independent Assessment of on-Board Microwave Radiometer Measurements in Coastal Zones Using Tropospheric Delays From GNSS. IEEE Trans. Geosci. Remote. Sens. 2018, 57, 1804–1816. [Google Scholar] [CrossRef]
- Lázaro, C.; Fernandes, M.J.; Vieira, T.; Vieira, E. A coastally improved global dataset of wet tropospheric corrections for satellite altimetry. Earth Syst. Sci. Data 2020, 12, 3205–3228. [Google Scholar] [CrossRef]
- Brown, S. A Novel Near-Land Radiometer Wet Path-Delay Retrieval Algorithm: Application to the Jason-2/OSTM Advanced Microwave Radiometer. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1986–1992. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Lázaro, C.; Vieira, T. On the role of the troposphere in satellite altimetry. Remote. Sens. Environ. 2021, 252, 112149. [Google Scholar] [CrossRef]
- Vieira, T.; Fernandes, M.J.; Lázaro, C. Analysis and retrieval of tropospheric corrections for CryoSat-2 over inland waters. Adv. Space Res. 2018, 62, 1479–1496. [Google Scholar] [CrossRef]
- Obligis, E.; Eymard, L.; Tran, N.; Labroue, S.; Femenias, P. First three years of the microwave radiometer aboard Envisat: In-flight calibration, processing, and validation of the geophysical products. J. Atmos. Ocean. Technol. 2006, 23, 802–814. [Google Scholar] [CrossRef]
- Obligis, E.; Rahmani, A.; Eymard, L.; Labroue, S.; Bronner, E. An Improved Retrieval Algorithm for Water Vapor Retrieval: Application to the Envisat Microwave Radiometer. IEEE Trans. Geosci. Remote. Sens. 2009, 47, 3057–3064. [Google Scholar] [CrossRef]
- Picard, B.; Frery, M.-L.; Obligis, E.; Eymard, L.; Steunou, N.; Picot, N. SARAL/AltiKa Wet Tropospheric Correction: In-Flight Calibration, Retrieval Strategies and Performances. Mar. Geodesy 2015, 38, 277–296. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhang, D.; Wang, Z.; Li, Y. The Validation of HY-2A ACMR retrieval algorithms and product. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGASS), Beijing, China, 10–15 July 2016. [Google Scholar] [CrossRef]
- Vieira, T.; Fernandes, M.J.; Lázaro, C. An enhanced retrieval of the wet tropospheric correction for Sentinel-3 using dynamic inputs from ERA5. J. Geodesy 2022, 96, 28. [Google Scholar] [CrossRef]
- Obligis, E.; Eymard, L.; Tran, N. A New Sidelobe Correction Algorithm for Microwave Radiometers: Application to the Envisat Instrument. IEEE Trans. Geosci. Remote. Sens. 2007, 45, 602–612. [Google Scholar] [CrossRef]
- Vieira, T.; Fernandes, M.J.; Lázaro, C. Modelling the Altitude Dependence of the Wet Path Delay for Coastal Altimetry Using 3-D Fields from ERA5. Remote. Sens. 2019, 11, 2973. [Google Scholar] [CrossRef] [Green Version]
- Collecte Localisation Satellites (CLS). Surface Topography Mission (STM) SRAL/MWR L2 Algorithm Definition, Accuracy and Specification; Ramonville St-Agne, France, 2011. Available online: https://www.eumetsat.int/media/38625 (accessed on 1 February 2023).
- Fernandes, M.J.; Lázaro, C. Independent assessment of Sentinel-3A wet tropospheric correction over the open and coastal ocean. Remote. Sens. 2018, 10, 484. [Google Scholar] [CrossRef] [Green Version]
- Thao, S.; Eymard, L.; Obligis, E.; Picard, B. Comparison of Regression Algorithms for the Retrieval of the Wet Tropospheric Path. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 4302–4314. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, Z. Evaluating the Accuracy of Jason-3 Water Vapor Product Using PWV Data from Global Radiosonde and GNSS Stations. IEEE Trans. Geosci. Remote. Sens. 2021, 59, 4008–4017. [Google Scholar] [CrossRef]
- Obligis, E.; Tran, N.; Eymard, L. An Assessment of Jason-1 Microwave Radiometer Measurement and Products. Mar. Geodesy 2004, 27, 255–277. [Google Scholar] [CrossRef]
- Wang, J.; Xu, H.; Yang, L.; Song, Q.; Ma, C. Cross-Calibrations of the HY-2B Altimeter Using Jason-3Satellite During the Period of April2019–September 2020. Front. Earth Sci. 2021, 9, 647583. [Google Scholar] [CrossRef]
- Jiang, M.; Xu, K.; Liu, Y.; Zhao, J.; Wang, L. Assessment of reprocessed sea surface height measurements derived from HY-2A radar altimeter and its application to the observation of 2015–2016 El Niño. Acta Oceanol. Sin. 2018, 37, 115–129. [Google Scholar] [CrossRef]
- Bao, L.; Gao, P.; Peng, H.; Jia, Y.; Shum, C.K.; Lin, M.; Guo, Q. First accuracy assessment of the HY-2A altimeter sea surface height observations: Cross-calibration results. Adv. Space Res. 2015, 55, 90–105. [Google Scholar] [CrossRef]
- Legeais, J.-F.; Ablain, M.; Thao, S. Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level. Ocean Sci. 2014, 10, 893–905. [Google Scholar] [CrossRef] [Green Version]
Channel (GHz) | MD (K) | STD (K) | Correlation Coefficient | Scale Factor |
---|---|---|---|---|
18.7 | −2.20 | 1.64 | 0.9820 | 1.014 |
23.8 | 0.62 | 2.03 | 0.9941 | 1.018 |
WTC methods | MD (cm) | RMSE(cm) | Scale Factor | Offset(cm) | Corr |
---|---|---|---|---|---|
Jason-3 | 0.27 | 0.76 | 0.9872 | 0.01 | 0.9968 |
EC algorithm database | 0.07 | 1.14 | 0.9947 | 0.01 | 0.9932 |
EC_retrieval database | 0.07 | 1.13 | 0.9949 | 0.01 | 0.9932 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Zhang, D.; Zhao, J.; Jiang, M. Brightness Temperature and Wet Tropospheric Correction of HY-2C Calibration Microwave Radiometer Using Model-Derived Wet Troposphere Path Delay from ECMWF. Remote Sens. 2023, 15, 1318. https://doi.org/10.3390/rs15051318
Zheng X, Zhang D, Zhao J, Jiang M. Brightness Temperature and Wet Tropospheric Correction of HY-2C Calibration Microwave Radiometer Using Model-Derived Wet Troposphere Path Delay from ECMWF. Remote Sensing. 2023; 15(5):1318. https://doi.org/10.3390/rs15051318
Chicago/Turabian StyleZheng, Xiaomeng, Dehai Zhang, Jin Zhao, and Maofei Jiang. 2023. "Brightness Temperature and Wet Tropospheric Correction of HY-2C Calibration Microwave Radiometer Using Model-Derived Wet Troposphere Path Delay from ECMWF" Remote Sensing 15, no. 5: 1318. https://doi.org/10.3390/rs15051318
APA StyleZheng, X., Zhang, D., Zhao, J., & Jiang, M. (2023). Brightness Temperature and Wet Tropospheric Correction of HY-2C Calibration Microwave Radiometer Using Model-Derived Wet Troposphere Path Delay from ECMWF. Remote Sensing, 15(5), 1318. https://doi.org/10.3390/rs15051318