Monitoring the Spatiotemporal Dynamics of Arctic Winter Snow/Ice with Moonlight Remote Sensing: Systematic Evaluation in Svalbard
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. The VNP46A1 Nighttime Remote Sensing Dataset
2.2.2. The Auxiliary Datasets
3. Method
4. Results
5. Discussion
5.1. The Potential of Moonlight Remote Sensing for Monitoring Spatiotemporal Patterns of Polar Snow/Ice
5.2. Comparison with Other Snow/Ice Products
5.3. Limitations and Future Works
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rumpf, S.B.; Gravey, M.; Brönnimann, O.; Luoto, M.; Cianfrani, C.; Mariethoz, G.; Guisan, A. From white to green: Snow cover loss and increased vegetation productivity in the European Alps. Science 2022, 376, 1119–1122. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.A.; Dewey, K.F.; Heim, R.R., Jr. Global Snow Cover Monitoring: An Update. Bull. Am. Meteorol. Soc. 1993, 74, 1689–1696. [Google Scholar] [CrossRef]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Eythorsson, D.; Gardarsson, S.M.; Ahmad, S.K.; Hossain, F.; Nijssen, B. Arctic climate and snow cover trends—Comparing Global Circulation Models with remote sensing observations. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 71–81. [Google Scholar] [CrossRef]
- Lin, Y.; Hyyppä, J. Characterizing ecosystem phenological diversity and its macroecology with snow cover phenology. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khani, H.M.; Kinnard, C.; Lévesque, E. Historical Trends and Projections of Snow Cover over the High Arctic: A Review. Water 2022, 14, 587. [Google Scholar] [CrossRef]
- Stroeve, J.; Holland, M.M.; Meier, W.; Scambos, T.; Serreze, M. Arctic Sea ice decline: Faster than forecast. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Comiso, J.C. Large Decadal Decline of the Arctic Multiyear Ice Cover. J. Clim. 2012, 25, 1176–1193. [Google Scholar] [CrossRef]
- Guo, S.; Du, P.; Xia, J.; Tang, P.; Wang, X.; Meng, Y.; Wang, H. Spatiotemporal changes of glacier and seasonal snow fluctuations over the Namcha Barwa–Gyala Peri massif using object-based classification from Landsat time series. ISPRS J. Photogramm. Remote Sens. 2021, 177, 21–37. [Google Scholar] [CrossRef]
- Bair, E.H.; Stillinger, T.; Dozier, J. Snow Property Inversion from Remote Sensing (SPIReS): A Generalized Multispectral Unmixing Approach with Examples from MODIS and Landsat 8 OLI. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7270–7284. [Google Scholar] [CrossRef]
- Girotto, M.; Musselman, K.N.; Essery, R.L.H. Data Assimilation Improves Estimates of Climate-Sensitive Seasonal Snow. Curr. Clim. Chang. Rep. 2020, 6, 81–94. [Google Scholar] [CrossRef]
- Li, Q.; Yang, T.; Li, L. Evaluation of snow depth and snow cover represented by multiple datasets over the Tianshan Mountains: Remote sensing, reanalysis, and simulation. Int. J. Clim. 2021, 42, 4223–4239. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, Q.; Shen, H.; Liu, T.; Li, T.; Yue, L.; Shi, X.; Zhang, L. Estimating snow depth by combining satellite data and ground-based observations over Alaska: A deep learning approach. J. Hydrol. 2020, 585, 124828. [Google Scholar] [CrossRef]
- Zheng, J.; Geldsetzer, T.; Yackel, J. Snow thickness estimation on first-year sea ice using microwave and optical remote sensing with melt modelling. Remote Sens. Environ. 2017, 199, 321–332. [Google Scholar] [CrossRef]
- Hao, X.; Huang, G.; Zheng, Z.; Sun, X.; Ji, W.; Zhao, H.; Wang, J.; Li, H.; Wang, X. Development and validation of a new MODIS snow-cover-extent product over China. Hydrol. Earth Syst. Sci. 2022, 26, 1937–1952. [Google Scholar] [CrossRef]
- Gafurov, A.; Lüdtke, S.; Unger-Shayesteh, K.; Vorogushyn, S.; Schöne, T.; Schmidt, S.; Kalashnikova, O.; Merz, B. MODSNOW-Tool: An operational tool for daily snow cover monitoring using MODIS data. Environ. Earth Sci. 2016, 75, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sánchez, R. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 2015, 19, 2337–2351. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; O’Leary, D.S.; DiGirolamo, N.E.; Miller, W.; Kang, D.H. The role of declining snow cover in the desiccation of the Great Salt Lake, Utah, using MODIS data. Remote Sens. Environ. 2021, 252, 112106. [Google Scholar] [CrossRef]
- Li, X.; Jing, Y.; Shen, H.; Zhang, L. The recent developments in cloud removal approaches of MODIS snow cover product. Hydrol. Earth Syst. Sci. 2019, 23, 2401–2416. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.; Zaphu, V.V.; Monica, N.; Bhadra, A.; Bandyopadhyay, A. Accuracy Assessment of MODIS Fractional Snow Cover Product for Eastern Himalayan Catchment. J. Indian Soc. Remote Sens. 2016, 44, 977–985. [Google Scholar] [CrossRef]
- Pan, P.; Chen, G.; Saruta, K.; Terata, Y. Snow cover detection based on two-dimensional scatter plots from MODIS imagery data. J. Appl. Remote Sens. 2015, 9, 096083. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Che, H.-Z.; Tan, S.-C.; Shi, G.-Y.; Yao, X.-P.; Zhao, H.-J. Improvement of snow/haze confusion data gaps in MODIS Dark Target aerosol retrievals in East China. Atmospheric Res. 2020, 245, 105063. [Google Scholar] [CrossRef]
- Zhu, L.; Radeloff, V.C.; Ives, A.R. Characterizing global patterns of frozen ground with and without snow cover using microwave and MODIS satellite data products. Remote Sens. Environ. 2017, 191, 168–178. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; DiGirolamo, N.E.; Román, M.O. MODIS cloud-gap filled snow-cover products: Advantages and uncertainties. Hydrol. Earth Syst. Sci. Discuss 2019, 123, 1–23. [Google Scholar]
- Trepte, Q.; Minnis, P.; Arduini, R.F. Daytime and nighttime polar cloud and snow identification using MODIS data. In Optical Remote Sensing of the Atmosphere and Clouds III; SPIE: Bellingham, DC, USA, 2003; Volume 4891, pp. 449–460. [Google Scholar] [CrossRef]
- Hall, D.K.; Kelly, R.E.J.; Riggs, G.A.; Chang, A.T.C.; Foster, J.L. Assessment of the relative accuracy of hemispheric-scale snow-cover maps. Ann. Glaciol. 2002, 34, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Riggs, G.; Hall, D. Continuity of MODIS and VIIRS Snow Cover Extent Data Products for Development of an Earth Science Data Record. Remote Sens. 2020, 12, 3781. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K. NASA S-NPP VIIRS Snow Cover Products Collection 2 User Guide; NASA: Washington, DC, USA, 2021. [Google Scholar]
- Brodzik, M.J.; Stewart, J.S. Near-Real-Time SSM/I-SSMIS EASE-Grid Daily Global Ice Concentration and Snow Extent, Version 5; NASA National Snow and Ice Data Center: Boulder, CO, USA, 2016. [Google Scholar]
- Kim, Y.; Kimball, J.S.; Glassy, J.; McDonald, K.C. MEaSUREs Polar EASE-Grid 2.0 Daily 6 km Land Freeze/Thaw Status from AMSR-E and AMSR2, Version 2; NASA National Snow and Ice Data Center: Boulder, CO, USA, 2021. [Google Scholar]
- Metsämäki, S.; Böttcher, K.; Pulliainen, J.; Luojus, K.; Cohen, J.; Takala, M.; Mattila, O.-P.; Schwaizer, G.; Derksen, C.; Koponen, S. The accuracy of snow melt-off day derived from optical and microwave radiometer data—A study for Europe. Remote Sens. Environ. 2018, 211, 1–12. [Google Scholar] [CrossRef]
- Shen, X.; Ke, C.-Q.; Li, H. Snow depth product over Antarctic Sea ice from 2002 to 2020 using multisource passive mi-crowave radiometers. Earth Syst. Sci. Data 2022, 14, 619–636. [Google Scholar] [CrossRef]
- Tedesco, M.; Jeyaratnam, J. A new operational snow retrieval algorithm applied to historical AMSR-E brightness tem-peratures. Remote Sens. 2016, 8, 1037. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Jiang, L.; Cui, H.; Wang, G.; Yang, J.; Liu, X.; Su, X. Evaluation and analysis of SMAP, AMSR2 and MEaSUREs freeze/thaw products in China. Remote Sens. Environ. 2020, 242, 111734. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Wang, J.; Zhou, M.; Liang, T. AMSR2 snow depth downscaling algorithm based on a multifactor approach over the Tibetan Plateau, China. Remote Sens. Environ. 2019, 231, 111268. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, T.; Zhong, X.; Shao, W.; Li, X. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote Sens. Environ. 2018, 210, 48–64. [Google Scholar] [CrossRef]
- Xu, M.; Li, H.; Chen, H.; Yin, X. Quantitative Measurement of Radio Frequency Interference for SMOS Mission. Remote Sens. 2022, 14, 1669. [Google Scholar] [CrossRef]
- Yu, L. Variability and Uncertainty of Satellite Sea Surface Salinity in the Subpolar North Atlantic (2010–2019). Remote Sens. 2020, 12, 2092. [Google Scholar] [CrossRef]
- Zhang, C.; Ji, Q.; Pang, X.; Su, J.; Liu, C. Comparison of passive microwave remote-sensing snow-depth products on Arctic Sea ice. Polar Res. 2019, 38. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Zhang, P.; Wu, Z. Seasonal snow cover classification based on SAR imagery and topographic data. Remote Sens. Lett. 2022, 13, 269–278. [Google Scholar] [CrossRef]
- Makynen, M.P.; Cheng, B.; Simila, M.H.; Vihma, T.; Hallikainen, M.T. Comparisons between SAR backscattering coef-ficient and results of a thermodynamic snow/ice model for the Baltic Sea land-fast sea ice. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1131–1141. [Google Scholar] [CrossRef]
- Yu, Y.; D’Alessandro, M.M.; Tebaldini, S.; Liao, M. Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios. Remote Sens. 2020, 12, 1638. [Google Scholar] [CrossRef]
- Tsai, Y.-L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Remote Sensing of Snow Cover Using Spaceborne SAR: A Review. Remote Sens. 2019, 11, 1456. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Jeong, J. Speckle Noise Reduction Technique for SAR Images Using Statistical Characteristics of Speckle Noise and Discrete Wavelet Transform. Remote Sens. 2019, 11, 1184. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Turner, R.E. A dynamic lunar spectral irradiance data set for NPOESS/VIIRS day/night band nighttime en-vironmental applications. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2316–2329. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Q.; Wang, J.; Wang, Y.; Shen, Y.; Shuai, Y. The Potential of Moonlight Remote Sensing: A Systematic Assessment with Multi-Source Nightlight Remote Sensing Data. Remote Sens. 2021, 13, 4639. [Google Scholar] [CrossRef]
- Miller, S.D.; Straka, W., III; Mills, S.P.; Elvidge, C.D.; Lee, T.F.; Solbrig, J.; Weiss, S.C. Illuminating the capabilities of the suomi national polar-orbiting partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night band. Remote Sens. 2013, 5, 6717–6766. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Song, Z.; Yang, H.; Yu, B.; Liu, H.; Che, T.; Chen, J.; Wu, J.; Shu, S.; Peng, X.; et al. Snow cover detection in mid-latitude mountainous and polar regions using nighttime light data. Remote Sens. Environ. 2021, 268, 112766. [Google Scholar] [CrossRef]
- Vickers, H.; Malnes, E.; van Pelt, W.; Pohjola, V.; Killie, M.; Saloranta, T.; Karlsen, S. A Compilation of Snow Cover Datasets for Svalbard: A Multi-Sensor, Multi-Model Study. Remote Sens. 2021, 13, 2002. [Google Scholar] [CrossRef]
- Li, T.; Zhu, Z.; Wang, Z.; Román, M.; Kalb, V. Continuous Monitoring of Nighttime Light Changes Based on Daily NASA’s Black Marble Product Suite. Remote Sens. Environ. 2022, 282, 113269. [Google Scholar] [CrossRef]
- Wang, Z.; Román, M.O.; Kalb, V.L.; Miller, S.D.; Zhang, J.; Shrestha, R.M. Quantifying uncertainties in nighttime light retrievals from Suomi-NPP and NOAA-20 VIIRS Day/Night Band data. Remote Sens. Environ. 2021, 263, 112557. [Google Scholar] [CrossRef]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Masuoka, E.J. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Zhou, Y.; Dong, B. Impact of temporal compositing on nighttime light data and its applications. Remote Sens. Environ. 2022, 274, 113016. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google earth engine applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Yommy, A.S.; Liu, R.; Wu, S. SAR image despeckling using refined Lee filter. In Proceedings of the 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; Volume 2, pp. 260–265. [Google Scholar]
- Gupta, N.; Bhadauria, H.S. Object based information extraction from high resolution satellite imagery using eCognition. Int. J. Comput. Sci. Issues 2014, 11, 139. [Google Scholar]
- Happ, P.N.; Ferreira, R.S.; Bentes, C.; Costa GA, O.P.; Feitosa, R.Q. Multiresolution segmentation: A parallel approach for high resolution image segmentation in multicore architectures. The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2010, 38, C7. [Google Scholar]
- Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS J. Photogramm. Remote Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Liu, D.; Qi, Z.; Zhang, H.; Li, X.; Yeh, A.G.-O.; Wang, J. Investigation of the capability of multitemporal RADARSAT-2 fully polarimetric SAR images for land cover classification: A case of Panyu, Guangdong province. Eur. J. Remote Sens. 2021, 54, 338–350. [Google Scholar] [CrossRef]
- Miller, S.D.; Combs, C.L.; Kidder, S.Q.; Lee, T.F. Assessing Moonlight Availability for Nighttime Environmental Ap-plications by Low-Light Visible Polar-Orbiting Satellite Sensors. J. Atmos. Ocean Technol. 2012, 29, 538–557. [Google Scholar] [CrossRef] [Green Version]
- Collados-Lara, A.-J.; Pardo-Igúzquiza, E.; Pulido-Velazquez, D. A distributed cellular automata model to simulate potential future impacts of climate change on snow cover area. Adv. Water Resour. 2018, 124, 106–119. [Google Scholar] [CrossRef]
- Foster, J.L. Night-time observations of snow using visible imagery. Int. J. Remote Sens. 1983, 4, 785–791. [Google Scholar] [CrossRef]
- Foster, J.L.; Hall, D.K. Observations of snow and ice features during the polar winter using moonlight as a source of illu-mination. Remote Sens. Environ. 1991, 37, 77–88. [Google Scholar] [CrossRef]
- Stopic, R.; Dias, E. Examining Thresholding and Factors Impacting Snow Cover Detection Using Nighttime Images. Remote Sens. 2023, 15, 868. [Google Scholar] [CrossRef]
- Weinman, J.A.; Masutani, M. Radiative transfer models of the appearance of city lights obscured by clouds observed in nocturnal satellite images. J. Geophys. Res. Atmos. 1987, 92, 5565. [Google Scholar] [CrossRef]
- Min, M.; Zheng, J.; Zhang, P.; Hu, X.; Chen, L.; Li, X.; Zhu, L. A low-light radiative transfer model for satellite obser-vations of moonlight and earth surface light at night. J. Quant. Spectrosc. Ra. 2020, 247, 106954. [Google Scholar] [CrossRef]
- Barentine, J.C.; Walczak, K.; Gyuk, G.; Tarr, C.; Longcore, T. A Case for a New Satellite Mission for Remote Sensing of Night Lights. Remote Sens. 2021, 13, 2294. [Google Scholar] [CrossRef]
- Guk, E.; Levin, N. Analyzing spatial variability in night-time lights using a high spatial resolution color Jilin-1 im-age—Je-rusalem as a case study. ISPRS J. Photogramm. Remote Sens. 2020, 163, 121–136. [Google Scholar] [CrossRef]
- SDGSAT-1. Available online: http://www.cbas.ac.cn/kypt/casearthxwx/ (accessed on 5 March 2021).
- Qimingxing-1(QMX-1). Available online: https://qmx.whu.edu.cn/ (accessed on 27 February 2022).
- Li, X.; Levin, N.; Xie, J.; Li, D. Monitoring hourly night-time light by an unmanned aerial vehicle and its implications to satellite remote sensing. Remote Sens. Environ. 2020, 247, 111942. [Google Scholar] [CrossRef]
- Pardo-Igúzquiza, E.; Collados-Lara, A.J.; Pulido-Velazquez, D. Estimation of the spatiotemporal dynamics of snow cover area by using cellular automata models. J. Hydrol. 2017, 550, 230–238. [Google Scholar] [CrossRef]
- Mu, L.; Liang, X.; Yang, Q.; Liu, J.; Zheng, F. Arctic Ice Ocean Prediction System: Evaluating sea-ice forecasts during Xuelong’s first trans-Arctic Passage in summer 2017. J. Glaciol. 2019, 65, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.; Gordon, N.D.; Bauer, P.; Bromwich, D.H.; Chevallier, M.; Day, J.J.; Dawson, J.; Doblas-Reyes, F.; Fairall, C.; Goessling, H.; et al. Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales. Bull. Am. Meteorol. Soc. 2016, 97, 1631–1647. [Google Scholar] [CrossRef] [Green Version]
Dataset | Resolution | Date | Counts |
---|---|---|---|
VNP10A1F | 375 m × 375 m | 23 September 2019–21 March 2020 | 567 |
23 September 2020–31 December 2020 | |||
MYD29P1N | 1 km × 1 km | 23 September 2019–21 March 2020 | 1312 |
23 September 2020–21 March 2021 | |||
MEaSUREs | 25 km × 25 km | 23 September 2019–21 March 2020 | 1094 |
23 September 2020–21 March 2021 | |||
AMSR_U2_L3 | 25 km × 25 km | 23 September 2019–21 March 2020 | 894 |
23 September 2020–21 March 2021 | |||
NISE_SSMISF18 | 25 km × 25 km | 23 September 2019–21 March 2020 | 1094 |
23 September 2020–21 March 2021 | |||
Sentinel-1 | 10 m × 10 m | 1 January 2020–21 March 2020 | 87 |
23 September 2020–31 December 2020 |
Date | Overall Accuracy (OA) | Kappa Coefficients |
---|---|---|
31 October 2020 | 84.10% | 0.69 |
6 November 2020 | 95.08% | 0.90 |
28 November 2020 | 76.91% | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Shen, Y.; Wang, Y.; Wang, Z.; Mo, Z.; Zhang, Q. Monitoring the Spatiotemporal Dynamics of Arctic Winter Snow/Ice with Moonlight Remote Sensing: Systematic Evaluation in Svalbard. Remote Sens. 2023, 15, 1255. https://doi.org/10.3390/rs15051255
Liu D, Shen Y, Wang Y, Wang Z, Mo Z, Zhang Q. Monitoring the Spatiotemporal Dynamics of Arctic Winter Snow/Ice with Moonlight Remote Sensing: Systematic Evaluation in Svalbard. Remote Sensing. 2023; 15(5):1255. https://doi.org/10.3390/rs15051255
Chicago/Turabian StyleLiu, Di, Yanyun Shen, Yiwen Wang, Zhipan Wang, Zewen Mo, and Qingling Zhang. 2023. "Monitoring the Spatiotemporal Dynamics of Arctic Winter Snow/Ice with Moonlight Remote Sensing: Systematic Evaluation in Svalbard" Remote Sensing 15, no. 5: 1255. https://doi.org/10.3390/rs15051255
APA StyleLiu, D., Shen, Y., Wang, Y., Wang, Z., Mo, Z., & Zhang, Q. (2023). Monitoring the Spatiotemporal Dynamics of Arctic Winter Snow/Ice with Moonlight Remote Sensing: Systematic Evaluation in Svalbard. Remote Sensing, 15(5), 1255. https://doi.org/10.3390/rs15051255