A Target-Based Non-Uniformity Self-Correction Method for Infrared Push-Broom Hyperspectral Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. MMS Data
2.2. N-MIR Spectrum Non-Uniformity
2.3. Methods
2.3.1. Dark Background Removal
2.3.2. V-NIR Spectral Laboratory Coefficient NUC
2.3.3. Bright and Dark Uniform Region Selection
2.3.4. Calculation of NUC in the N-MIR Spectral Band
3. Results and Discussion
3.1. Data and Evaluation Standards
3.2. Simulation Experiments
3.3. Application Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mouzali, S.; Lefebvre, S.; Rommeluere, S.; Ferrec, Y.; Primot, J. Modeling of HgCdTe focal plane array spectral inhomogeneities. In Proceedings of the SPIE9520, Integrated Photonics: Materials, Devices, and Applications III, Barcelona, Spain, 4–6 May 2015; Volume 95200S, pp. 1–7. [Google Scholar]
- Arslan, Y.; Oguz, F.; Besikci, C. Extended wavelength SWIR InGaAs focal plane array: Characteristics and limitations. Infrared Phys. Technol. 2015, 70, 134–137. [Google Scholar] [CrossRef]
- Naratanan, B.; Hardie, R.C.; Muse, R.A. Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture. Appl. Opt. 2005, 44, 3482–3491. [Google Scholar] [CrossRef] [PubMed]
- Ratliff, B.M.; Hayat, M.M.; Tyo, J.S. Radiometrically accurate scene-based nonuniformity correction for array sensors. J. Opt. Soc. Am. A 2003, 20, 1890–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, J.J.; Stitt, J.R.; Leath, D.M. Improved finite impulse response filters for enhanced destriping of geostationary satellite data. Remote Sens. Environ. 1998, 66, 235–249. [Google Scholar] [CrossRef]
- Chen, J.; Shao, Y.; Guo, H.; Wang, W.; Zhu, B. Destriping CMODIS data by power filtering. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2119–2124. [Google Scholar] [CrossRef]
- Pande-Chhetri, R.; Abd-Elrahman, A. De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering. ISPRS J. Photogramm. Remote Sens. 2011, 66, 620–636. [Google Scholar] [CrossRef]
- Münch, B.; Trtik, P.; Marone, F.; Stampanoni, M. Stripe and ring artifact removal with combined wavelet:Fourier filtering. Opt. Express 2009, 17, 85678591. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.F.; Zhang, L.P. A MAP-based algorithm for destriping and inpainting of remotely sensed images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1492–1502. [Google Scholar] [CrossRef]
- Bouali, M.; Ladjal, S. Toward optimal destriping of MODIS data using a unidirectional variational model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2924–2935. [Google Scholar] [CrossRef]
- Wang, M.; Huang, T.Z.; Zhao, X.L.; Deng, L.J.; Liu, G. A unidirectional total variation and second-order total variation model for destriping of remote sensing images. Math. Probl. Eng. 2017, 2017, 4397189. [Google Scholar] [CrossRef] [Green Version]
- Wegener, M. Destriping multiple sensor imagery by improved histogram matching. Int. J. Remote Sens. 1990, 11, 859–875. [Google Scholar] [CrossRef]
- Rakwatin, P.; Takeuchi, W.; Yasuoka, Y. Stripe noise reduction in MoDIS data by combining histogram matching with facet filter. IEEE Trans. Geosci. Remote Sens. 2007, 45, 18441856. [Google Scholar] [CrossRef]
- Cao, B.; Du, Y.; Xu, D.; Li, H.; Liu, Q. An improved histogram matching algorithm for the removal of striping noise in optical remote sensing imagery. Optik 2015, 126, 4723–4730. [Google Scholar] [CrossRef]
- Leathers, R.A.; Downes, T.V.; Priest, R.G. Scene-based nonuniformity corrections for optical and SWIR push-broom sensors. Opt. Express 2005, 13, 5136–5150. [Google Scholar] [CrossRef]
- Jia, J.; Wang, Y.; Cheng, X.; Yuan, L.; Zhao, D.; Ye, Q.; Zhang, X.; Shu, R.; Wang, J. Destriping algorithms based on statistics and spatial filtering for visible-to-thermal infrared push-broom hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4077–4091. [Google Scholar] [CrossRef]
- Hu, B.L.; Hao, S.J.; Sun, D.X.; Liu, Y.N. A novel scene-based non-uniformity correction method for SWIR push-broom hyperspectral sensors. ISPRS J. Photogramm. Remote Sens. 2017, 131, 160–169. [Google Scholar] [CrossRef]
- Zhou, J.; Kwan, C.; Ayhan, B. Improved target detection for hyperspectral images using hybrid in-scene calibration. J. Appl. Remote Sens. 2017, 11, 035010. [Google Scholar] [CrossRef]
- Bell, J.F., III; Pollack, J.B.; Geballe, T.R.; Cruikshank, D.P.; Freedman, R. Spectroscopy of Mars from 2.04 to 2.44 mm during the 1993 opposition: Absolute calibration and atmospheric vs. mineralogic origin of narrow absorption features. Icarus 1994, 111, 106–123. [Google Scholar] [CrossRef]
- Clark, R.N. Reflectance spectra. In Rock Physics & Phase Relations: A Handbook of Physical Constants; Ahrens, T.J., Ed.; AGU Ref. Shelf 3; AGU: Washington, DC, USA, 1995; pp. 178–188. [Google Scholar]
- Ehlmann, B.L.; Edwards, C.S. Mineralogy of the Martian Surface. Annu. Rev. Earth Planet. Sci. 2014, 42, 291–315. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Xu, R.; Li, C.; Yuan, L.; Liu, C.; Lv, G.; Jin, J.; Xie, J.; Kong, C.; Li, F.; et al. Mars Mineralogical Spectrometer (MMS) on the Tianwen-1 Mission. Space Sci. Rev. 2021, 217, 27. [Google Scholar] [CrossRef]
- He, Z.P.; Wu, B.; Xu, R.; Liu, C.; Li, C.; Yuan, L.; Lv, G.; Jin, J. Detection mechanism and instrument characteristics of the Mars Mineralogical Spectrometer for the Tianwen-1 orbiter. Sci. Sin. Phys. Mech. Astron. 2022, 52, 239503. (In Chinese) [Google Scholar] [CrossRef]
- Gui, Y.; Li, J.; Wang, M.; He, Z. Research and application of spectroscopic techniques in lunar and Mars exploration missions. J. Infrared Millim. Waves 2021, 42, 1730001-1730001-11. [Google Scholar]
- Liu, B.; Ren, X.; Liu, D.; Liu, J.; Zhang, Q.; Huang, H.; Xu, R.; Wang, R.; Liu, C.; He, Z.; et al. Ground Validation Experiment and Spectral Detection Capability Evaluation of Mars Mineralogical Spectrometer (MMS) Aboard HX-1 Orbiter. Space Sci. Rev. 2022, 218, 1. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, R.; Li, X.; Shen, H.; Yuan, Z. Block adjustment-based radiometric normalization by considering global and local differences. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
Evaluation Metric | HM | MM | BW | TV | Proposed |
---|---|---|---|---|---|
19.2% | 3.2% | 14.8% | 4.5% | 2.6% | |
SSIM | 0.6735 | 0.8937 | 0.4731 | 0.8124 | 0.9921 |
Evaluation Metric | HM | MM | BW | TV | Proposed |
---|---|---|---|---|---|
10.2% | 3.1% | 7.4% | 5.3% | 2.3% | |
SSIM | 0.7744 | 0.9749 | 0.8131 | 0.8536 | 0.9893 |
Method | Original Image | HW | BW | MM | TV | Proposed |
---|---|---|---|---|---|---|
NR | 1 | 1.754 | 1.769 | 1.869 | 1.783 | 2.408 |
ICV | 13.74 | 18.52 | 17.2 | 20.12 | 16.58 | 22.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Liu, C.; Xu, R.; He, Z.; Liu, B.; Chen, W.; Zhang, Q. A Target-Based Non-Uniformity Self-Correction Method for Infrared Push-Broom Hyperspectral Sensors. Remote Sens. 2023, 15, 1186. https://doi.org/10.3390/rs15051186
Wu B, Liu C, Xu R, He Z, Liu B, Chen W, Zhang Q. A Target-Based Non-Uniformity Self-Correction Method for Infrared Push-Broom Hyperspectral Sensors. Remote Sensing. 2023; 15(5):1186. https://doi.org/10.3390/rs15051186
Chicago/Turabian StyleWu, Bing, Chengyu Liu, Rui Xu, Zhiping He, Bin Liu, Wangli Chen, and Qing Zhang. 2023. "A Target-Based Non-Uniformity Self-Correction Method for Infrared Push-Broom Hyperspectral Sensors" Remote Sensing 15, no. 5: 1186. https://doi.org/10.3390/rs15051186
APA StyleWu, B., Liu, C., Xu, R., He, Z., Liu, B., Chen, W., & Zhang, Q. (2023). A Target-Based Non-Uniformity Self-Correction Method for Infrared Push-Broom Hyperspectral Sensors. Remote Sensing, 15(5), 1186. https://doi.org/10.3390/rs15051186