Study on Influencing Factors of the Information Content of Satellite Remote-Sensing Aerosol Vertical Profiles Using Oxygen A-Band
Abstract
:1. Introduction
2. Description of Methods
2.1. Information Content Theory
2.2. Aerosol and Ground Surface Models
- Urban–industrial and mixed
- 2.
- Urban (highly polluted)
- 3.
- Biomass burning
- 4.
- Oceanic
2.3. Photon Shot Noise Model
3. Results and Discussion
3.1. Satellite Viewing Geometry
3.2. Spectral Resolution
3.3. Instrument Integration Time
3.4. Volume Size Distribution
3.5. Prior Error
4. Conclusions
- Different viewing geometries will affect the acquisition of aerosol vertical profile information. When the scattering angle is small, the sensitivity of the measurement information to the aerosol profile increases and more information can be obtained. As the scattering angle decreases, the DFS value of the single absorption band increases to about 0.4. Different aerosol modes are affected by the viewing geometry in the same trend.
- Increasing the spectral resolution of the instrument can increase the observed content of information. When the instrument spectral resolution was increased from 1 nm to 0.01 nm, the total DFS value of the O2 A-band increased from 1.2–2.3 to 3.8–5.1. In addition, increasing the spectral resolution reduces the dependence on the reflectance of the high surface reflectance area during retrieval of the aerosol vertical profiles.
- We simulated the DFS values in different SNR and spectral resolutions by changing the instrument integration time. The results show that more information content can be acquired with the increase in spectral resolution and SNR. The integration time increases the DFS value from 13% to 28%, while spectral resolutions can boost the DFS value (from 41% to 53%). Extending the integration time would increase the DFS value gradually from 13% to 28%. It shows that the spectral resolution has a greater impact on the DFS.
- The retrieval effect of the vertical coarse-dominated aerosol profile in the O2 A-band is much better, and the DFS value is about 21% higher than the result of the fine-dominated aerosol. However, increasing the spectral resolution has a similar effect on retrieval of aerosol vertical profiles in three size distribution modes.
- Higher spectral resolution of any prior errors can increase the content of information. Concurrently, the reduction of the posterior error also illustrates the improvement in spectral resolution on the DFS.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C.J.; Fushimi, A.; Enami, S.; Arangio, A.M.; Frohlich-Nowoisky, J.; Fujitani, Y.; et al. Aerosol Health Effects from Molecular to Global Scales. Environ. Sci. Technol. 2017, 51, 13545–13567. [Google Scholar] [CrossRef] [PubMed]
- Samset, B.H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T.K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R.C.; et al. Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos. Chem. Phys. 2013, 13, 2423–2434. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Adams, A.; Wang, C.; Zhang, C. Black Carbon and West African Monsoon precipitation: Observations and simulations. Ann. Geophys. 2009, 27, 4171–4181. [Google Scholar] [CrossRef]
- Geddes, A.; Bosch, H. Tropospheric aerosol profile information from high-resolution oxygen A-band measurements from space. Atmos. Meas. Tech. 2015, 8, 859–874. [Google Scholar] [CrossRef]
- Zeng, Z.C.; Natraj, V.; Xu, F.; Pongetti, T.J.; Shia, R.L.; Kort, E.A.; Toon, G.C.; Sander, S.P.; Yung, Y.L. Constraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption. Geophys. Res. Lett. 2018, 45, 10772–10780. [Google Scholar] [CrossRef]
- Rosen, J.M.; Hofmann, D.J. Stratospheric aerosol measurements II: The worldwide distribution. J. Atmos. Sci. 1975, 32, 1457–1462. [Google Scholar] [CrossRef]
- Amodeo, A.; Pappalardo, G.; Bosenberg, J.; Ansmann, A.; Apituley, A.; Alados-Arboledas, L.; Balis, D.; Bockmann, C.; Chaikovsky, A.; Comeron, A.; et al. A European research infrastructure for the aerosol study on a continental scale: EARLINET-ASOS. In Proceedings of the Conference on Remote Sensing of Clouds and the Atmosphere XII, Florence, Italy, 17–19 September 2007. [Google Scholar]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. THE CALIPSO MISSION A Global 3D View of Aerosols and Clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- Ntwali, D.; Dubache, G.; Ogou, F.K. Vertical Profile Comparison of Aerosol and Cloud Optical Properties in Dominated Dust and Smoke Regions over Africa Based on Space-Based Lidar. Atmos. Clim. Sci. 2022, 12, 588–602. [Google Scholar] [CrossRef]
- Wu, L.H.; Hasekamp, O.; van Diedenhoven, B.; Cairns, B.; Yorks, J.E.; Chowdhary, J. Passive remote sensing of aerosol layer height using near-UV multiangle polarization measurements. Geophys. Res. Lett. 2016, 43, 8783–8790. [Google Scholar] [CrossRef]
- Nelson, D.L.; Garay, M.J.; Kahn, R.A.; Dunst, B.A. Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX). Remote Sens. 2013, 5, 4593–4628. [Google Scholar] [CrossRef]
- Fischer, H.; Birk, M.; Blom, C.; Carli, B.; Carlotti, M.; Von Clarmann, T.; Delbouille, L.; Dudhia, A.; Ehhalt, D.; Endemann, M. MIPAS: An instrument for atmospheric and climate research. Atmos. Chem. Phys. 2008, 8, 2151–2188. [Google Scholar] [CrossRef]
- Dubuisson, P.; Frouin, R.; Dessailly, D.; Duforet, L.; Leon, J.F.; Voss, K.; Antoine, D. Estimating the altitude of aerosol plumes over the ocean from reflectance ratio measurements in the O2 A-band. Remote Sens. Environ. 2009, 113, 1899–1911. [Google Scholar] [CrossRef]
- Stam, D.M.; De Haan, J.F.; Hovenier, J.W.; Aben, I. Detecting radiances in the O2 A band using polarization-sensitive satellite instruments with application to the Global Ozone Monitoring Experiment. J. Geophys. Res. Atmos. 2000, 105, 22379–22392. [Google Scholar] [CrossRef]
- Wang, P.; Stammes, P.; Van Der A, R.; Pinardi, G.; Van Roozendael, M. FRESCO+: An improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals. Atmos. Chem. Phys. 2008, 8, 6565–6576. [Google Scholar] [CrossRef]
- Natraj, V.; Spurr, R.J.D.; Boesch, H.; Jiang, Y.B.; Yung, Y.L. Evaluation of errors from neglecting polarization in the forward modeling of O2 A band measurements from space, with relevance to CO2 column retrieval from polarization-sensitive instruments. J. Quant. Spectrosc. Radiat. Transf. 2007, 103, 245–259. [Google Scholar] [CrossRef]
- Ding, S.G.; Wang, J.; Xu, X.G. Polarimetric remote sensing in oxygen A and B bands: Sensitivity study and information content analysis for vertical profile of aerosols. Atmos. Meas. Tech. 2016, 9, 2077–2092. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.G.; Wang, J.; Diner, D.J. Can multi-angular polarimetric measurements in the oxygen-A and B bands improve the retrieval of aerosol vertical distribution? J. Quant. Spectrosc. Radiat. Transf. 2021, 270, 21. [Google Scholar] [CrossRef]
- Hollstein, A.; Fischer, J. Retrieving aerosol height from the oxygen A band: A fast forward operator and sensitivity study concerning spectral resolution, instrumental noise, and surface inhomogeneity. Atmos. Meas. Tech. 2014, 7, 1429–1441. [Google Scholar] [CrossRef]
- Nanda, S.; de Graaf, M.; Veefkind, J.P.; ter Linden, M.; Sneep, M.; de Haan, J.; Levelt, P.F. A neural network radiative transfer model approach applied to the Tropospheric Monitoring Instrument aerosol height algorithm. Atmos. Meas. Tech. 2019, 12, 6619–6634. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wang, J. UNL-VRTM, a testbed for aerosol remote sensing: Model developments and applications. In Springer Series in Light Scattering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–69. [Google Scholar]
- Hou, W.; Wang, J.; Xu, X.; Reid, J.S.; Han, D. An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework. J. Quant. Spectrosc. Radiat. Transf. 2016, 178, 400–415. [Google Scholar] [CrossRef]
- Bernardo, J.M.; Smith, A.F. Bayesian Theory; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 405. [Google Scholar]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World scientific: Singapore, 2000; Volume 2. [Google Scholar]
- Colosimo, S.F.; Natraj, V.; Sander, S.P.; Stutz, J. A sensitivity study on the retrieval of aerosol vertical profiles using the oxygen A-band. Atmos. Meas. Tech. 2016, 9, 1889–1905. [Google Scholar] [CrossRef]
- Liu, P.F.; Zhao, C.S.; Zhang, Q.; Deng, Z.Z.; Huang, M.Y.; Ma, X.C.; Tie, X.X. Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus Ser. B-Chem. Phys. Meteorol. 2009, 61, 756–767. [Google Scholar] [CrossRef]
- Schafer, J.S.; Eck, T.F.; Holben, B.N.; Thornhill, K.L.; Anderson, B.E.; Sinyuk, A.; Giles, D.M.; Winstead, E.L.; Ziemba, L.D.; Beyersdorf, A.J.; et al. Intercomparison of aerosol single-scattering albedo derived from AERONET surface radiometers and LARGE in situ aircraft profiles during the 2011 DRAGON-MD and DISCOVER-AQ experiments. J. Geophys. Res. Atmos. 2014, 119, 7439–7452. [Google Scholar] [CrossRef]
- Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R. The CU Airborne MAX-DOAS instrument: Vertical profiling of aerosol extinction and trace gases. Atmos. Meas. Tech. 2013, 6, 719–739. [Google Scholar] [CrossRef]
- Kipling, Z.; Stier, P.; Johnson, C.E.; Mann, G.W.; Bellouin, N.; Bauer, S.E.; Bergman, T.; Chin, M.; Diehl, T.; Ghan, S.J.; et al. What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3-UKCA and inter-model variation from AeroCom Phase II. Atmos. Chem. Phys. 2016, 16, 2221–2241. [Google Scholar] [CrossRef]
- Moorthy, K.K.; Nair, V.S.; Babu, S.S.; Satheesh, S.K. Spatial and vertical heterogeneities in aerosol properties over oceanic regions around India: Implications for radiative forcing. Q. J. R. Meteorol. Soc. 2009, 135, 2131–2145. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanre, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Zeng, J.; Xu, X.G.; Wang, J.; Wang, Y.; Chen, X.; Lu, Z.D.; Torres, O.; Reid, J.S.; Miller, S.D. Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: Hourly results from EPIC/DSCOVR in deep space. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Electr Network, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 5588–5591. [Google Scholar]
- Hamazaki, T.; Kaneko, Y.; Kuze, A.; Kondo, K. Fourier transform spectrometer for greenhouse gases observing satellite (GOSAT). In Proceedings of the Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing, Honolulu, HI, USA, 11 January 2005; pp. 73–80. [Google Scholar]
- Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Naylor, B.; Roehl, C.M.; O’Dell, C.; Mandrake, L.; Viatte, C.; Kiel, M. Comparisons of the orbiting carbon observatory-2 (OCO-2) X CO2 measurements with TCCON. Atmos. Meas. Tech. 2017, 10, 2209–2238. [Google Scholar] [CrossRef]
- Velazco, V.A.; Buchwitz, M.; Bovensmann, H.; Reuter, M.; Schneising, O.; Heymann, J.; Krings, T.; Gerilowski, K.; Burrows, J.P. Towards space based verification of CO2 emissions from strong localized sources: Fossil fuel power plant emissions as seen by a CarbonSat constellation. Atmos. Meas. Tech. 2011, 4, 2809–2822. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Shi, W.; Xia, G.; Wang, J.; Chen, Q.; Jin, S. Information content analysis and sensitivity of retrieval of aerosol vertical profiles using polarimetric oxygen A-band spectra. J. Atmos. Environ. Opt. 2022, 17, 360–368. [Google Scholar]
Aerosol Type | Reff_f/μm | Reff_f/μm | Veff_f/μm | Veff_c/μm | Refractive Index | FMF |
---|---|---|---|---|---|---|
Urban–industrial and mixed | 0.12 | 3.03 | 0.38 | 0.31 | 1.41–0.005 i | 0.78 |
Urban (highly polluted) | 0.11 | 2.76 | 0.43 | 0.39 | 1.40–0.03 i | 0.705 |
Biomass burning | 0.14 | 3.27 | 0.41 | 0.36 | 1.51–0.019 i | 0.762 |
Oceanic | 0.12 | 2.32 | 0.25 | 0.37 | 1.48–0.002 i | 0.674 |
Satellite Name | Launch Year | Spectral Range (nm) | Spectral Resolution | △R |
---|---|---|---|---|
GOME-2 | 2007 | 590–790 | 0.48 nm | 0.318 |
GOSAT | 2009 | 756–775 | 0.03 nm | 0.326 |
OCO-2 | 2014 | 757–775 | 0.044 nm | 0.291 |
CarbonSat | 2018 | 757–775 | 0.1 nm | 0.268 |
GF5-B | 2021 | 765–769 | 0.6 cm−1 | 0.159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sun, X.; Huang, H.; Ti, R.; Liu, X.; Fan, Y. Study on Influencing Factors of the Information Content of Satellite Remote-Sensing Aerosol Vertical Profiles Using Oxygen A-Band. Remote Sens. 2023, 15, 948. https://doi.org/10.3390/rs15040948
Wang Y, Sun X, Huang H, Ti R, Liu X, Fan Y. Study on Influencing Factors of the Information Content of Satellite Remote-Sensing Aerosol Vertical Profiles Using Oxygen A-Band. Remote Sensing. 2023; 15(4):948. https://doi.org/10.3390/rs15040948
Chicago/Turabian StyleWang, Yuxuan, Xiaobing Sun, Honglian Huang, Rufang Ti, Xiao Liu, and Yizhe Fan. 2023. "Study on Influencing Factors of the Information Content of Satellite Remote-Sensing Aerosol Vertical Profiles Using Oxygen A-Band" Remote Sensing 15, no. 4: 948. https://doi.org/10.3390/rs15040948
APA StyleWang, Y., Sun, X., Huang, H., Ti, R., Liu, X., & Fan, Y. (2023). Study on Influencing Factors of the Information Content of Satellite Remote-Sensing Aerosol Vertical Profiles Using Oxygen A-Band. Remote Sensing, 15(4), 948. https://doi.org/10.3390/rs15040948