Investigating the Stability of the Hill of the Acropolis of Athens, Greece, Using Fuzzy Logic and Remote Sensing Techniques
Abstract
:1. Introduction
2. Study Area
2.1. General Settings
2.2. Geological-Hydrogeological Settings
2.3. Seismicity-Tectonic Settings
2.4. Applied Mitigation Measures
3. Methodology
3.1. Selection of Instability-Related Variable, Weighting and Normalizing the Instability-Related Variables
3.1.1. Lithology
3.1.2. Slope Angle
3.1.3. Density of Discontinuities
3.1.4. Density of Faults
3.1.5. Density of Surface Runoff Elements
3.1.6. Orientation of the Stratigraphy of the Geological Formations in Relation to the Orientation of the Slope
3.1.7. Satellite Data
3.2. Normalization
3.3. Fuzzy Additive Weighting Model
3.4. Construction of the Rock Instability Model
3.5. Validation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Drinia, H.; Tripolitsiotou, F.; Cheila, T.; Zafeiropoulos, G. The Geosites of the Sacred Rock of Acropolis (UNESCO World Heritage, Athens, Greece): Cultural and Geological Heritage Integrated. Geosciences 2022, 12, 330. [Google Scholar] [CrossRef]
- Andronopoulos, V.; Koukis, G. Engineering Geology Study in the Acropolis Area-Athens; IGME: Madrid, Spain, 1976; p. 66. [Google Scholar]
- Egglezos, D.; Ioannidou, M.; Moullou, D.; Kalogeras, I. Geotechnical issues of the Athenian Acropolis. In Geotechnics and Heritage: Case Histories; Bilotta, E., Flora, A., Lirer, S., Viggiani, C., Eds.; Taylor and Francis Group: London, UK, 2013; pp. 13–48. [Google Scholar]
- Koukis, G.; Pyrgiotis, L.; Kouki, A. The Acropolis Hill of Athens: Engineering Geological Investigations and Protective Measures for the Preservation of the Site and the Monuments. In Engineering Geology for Society and Territory—Volume 8; Springer: Cham, Switzerland, 2015; pp. 89–93. [Google Scholar]
- Sakellariou, M.; Kalogeras, I.; Kapogianni, E.; Psarropoulos, P. Investigation of the Structural Response of the Acropolis Wall Due to Seismic Loading, via Optical Fibre Sensors and Ac-Celerographs, Report to the Acropolis Restoration Service; YSMA: Athens, Greece, 2016; pp. 1–85. (In Greek) [Google Scholar]
- Kapogianni, E.; Psarropoulos, P.N.; Kokoris, D.; Kalogeras, I.; Michalopoulou, D.; Eleftheriou, V.; Sakellariou, M.G. Impact of Local Site Conditions on the Seismic Response of the Athenian Acropolis Hill. Geotech. Geol. Eng. 2020, 39, 1817–1830. [Google Scholar] [CrossRef]
- Andropoulos, B.; Koukis, G. Engineering geological problems in the Acropolis of Athens. In Proceedings of the International Symposium Organized by the Greek National Group of IAEG, Engineering Geology of Ancient Works, Monuments and Historical Sites, Athens, Greece, 19–23 September 1988; Volume 3, pp. 1819–1831. [Google Scholar]
- Higgins, M.D.; Higgins, R.A. Geological Companion to Greece and the Aegean, London; Gerald Duckworth Co.: London, UK, 1996; pp. 26–31. [Google Scholar]
- Kambouroglou, E. Report on the Hydrogeological and Engineering Geology of the Klepsydra Spring and the Surrounding Area of Acropolis Hill, YSMA Archive; YSMA: Athens, Greece, 2013. (In Greek) [Google Scholar]
- Lan, H.; Martin, C.D.; Zhou, C.; Lim, C.H. Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology 2010, 118, 213–223. [Google Scholar] [CrossRef]
- Egglezos, D. The use of modern technological applications for restoring the circuit Walls of the Acropolis. In Proceedings of the Modern Technologies in the Restoration of the Acropolis, Athens, Greece, 19 March 2010. [Google Scholar]
- Ioannidou, M.; Moullou, D.; Egglezos, D. The Restoration of the Acropolis of Athens: A Holistic Approach. In Handbook of Cultural Heritage Analysis; D’Amico, S., Venuti, V., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Moullou, D.; Mavrommati, D. Topographic and photogrammetric recording of the Acropolis of Athens. In Proceedings of the XXI CIPA International Symposium, Athens, Greece, 1–6 October 2007. [Google Scholar]
- Mavromati, D.; Moullou, D. Application of modern surveying and geometric documentation methods in the Acropolis of Athens. In Proceedings of the 3rd National Conference Mild Interventions for the Protection of Historical Structures; Ianos: Thessaloniki, Greece, 2009; pp. 299–308. [Google Scholar]
- Astreinidis, E.; Egglezos, D. Application of fiber optic (Bragg type) sensors for instrumental monitoring of monuments: The case of the Perimeter Wall of the Acropolis. In Proceedings of the 3rd Conference on Earthquake Engineering, Athens, Greece, 5–7 November 2008. [Google Scholar]
- Ferretti, A.; Pratti, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferomety. IEEE Trans. Geosci. Remote sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003. [Google Scholar]
- Chen, F.; Wu, Y.; Zhang, Y.; Parcharidis, I.; Ma, P.; Xiao, R.; Xu, J.; Zhou, W.; Tang, P.; Foumelis, M. Surface Motion and Structural Instability Monitoring of Ming Dynasty City Walls by Two-Step Tomo-PSInSAR Approach in Nanjing City, China. Remote Sens. 2017, 9, 371. [Google Scholar] [CrossRef] [Green Version]
- Tsangaratos, P.; Loupasakis, C.; Nikolakopoulos, K.; Angelitsa, V.; Ilia, I. Developing a landslide susceptibility map based on remote sensing, fuzzy logic and expert knowledge of the Island of Lefkada, Greece. Environ. Earth Sci. 2018, 77, 363. [Google Scholar] [CrossRef]
- Frattini, P.; Crosta, G.; Carrara, A.; Agliardi, F. Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 2008, 94, 419–437. [Google Scholar] [CrossRef]
- Youssef, A.M. Landslide susceptibility delineation in the Ar-Rayth area, Jizan, Kingdom of Saudi Arabia, using analytical hierarchy process, frequency ratio, and logistic regression models. Environ. Earth Sci. 2015, 73, 8499–8518. [Google Scholar] [CrossRef]
- Pourghasemi, H.-R.; Teimoori Yansari, Z.; Panagos, P.; Pradhan, B. Analysis and evaluation of landslide susceptibility: A review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arab. J. Geosci. 2018, 11, 193. [Google Scholar] [CrossRef]
- Tangestani, M.H. A comparative study of Dempster–Shafer and fuzzy models for landslide susceptibility mapping using a GIS: An experience from Zagros Mountains, SW Iran. J. Asian Earth Sci. 2009, 35, 66–73. [Google Scholar] [CrossRef]
- Alimohammadlou, Y.; Najafi, A.; Gokceoglu, C. Estimation of rainfall-induced landslides using ANN and fuzzy clustering methods: A case study in Saeen Slope, Azerbaijan province, Iran. CATENA 2014, 120, 149–162. [Google Scholar] [CrossRef]
- Kouli, M.; Loupasakis, C.; Soupios, P.; Rozos, D.; Vallianatos, F. Landslide susceptibility mapping by comparing the WLC and WofE multi-criteria methods in the West Crete Island, Greece. Environ. Earth Sci. 2014, 72, 5197–5219. [Google Scholar] [CrossRef]
- Saroglou, C. GIS-Based Rockfall Susceptibility Zoning in Greece. Geosciences 2019, 9, 163. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.-Y.; Chang, Y.-H.; Shen, C.-Y. A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. Eur. J. Oper. Res. 2008, 189, 132–145. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10.5; Environmental Systems Research Institute: Redlands, CA, USA, 2015. [Google Scholar]
- Marinos, G.; Katsikatsos, G.; Georgiadou-Dikeoulia, E.; Mikrou, R. The Athens schist formation, I. Stratigraphy and structure. Ann. Géologiques Pays Helléniques 1971, 22, 183–216. (In Greek) [Google Scholar]
- Regueiro, M.; Stamatakis, M.; Laskaridis, K. The geology of the Acropolis (Athens, Greece). Eur. Geol. 2014, 38, 45–52. [Google Scholar]
- Ambraseys, N. Material for the investigation of the seismicity of Central Greece. In Historical Investigation of the Seismicity of European Earthquakes; Albinii, P., Moroni, A., Eds.; INGV: Palermo, Italy, 1994; Volume 2, pp. 1–10. [Google Scholar]
- Ambraseys, N.N.; Jackson, J.A. Seismicity and strain in the Gulf of Corinth (Greece) since 1694. J. Earthq. Eng. 1997, 1, 433–477. [Google Scholar] [CrossRef]
- Zambas, C.; Ambraseys, N.; Boletis, C.; Zampa, I. The Two Choragic Columns of the South Slope of the Acropolis, as Witnesses of the Seismic History of the Centre of Athens, Scientific Project Report; John Latsis Public Benefit Foundation: Athens, Greece, 2011. [Google Scholar]
- Ambraseys, N. On the long-term seismicity of the city of Athens. In Proceedings of the Academy of Athens, Athina, Greece, 18 February 2010; Volume A, pp. 81–136. [Google Scholar]
- Psarropoulos, P.N.; Kapogianni, E.; Kalogeras, I.; Michalopoulou, D.; Eleftheriou, V.; Dimopoulos, G.; Sakellariou, M. Seismic response of the circuit wall of the Acropolis of Athens: Recordings versus numerical simulations. Soil. Dyn. Earthq. Eng. 2018, 113, 309–316. [Google Scholar] [CrossRef]
- Monokroussos, A. “CONSOLIDATION WORK ON THE ROCK OF THE ACROPOLIS, A. The Southern Slope-Eastern Part” Ministry of Culture and Sports, Acropolis Restoration Service, Report; YSMA: Athens, Greece, 1994. (In Greek) [Google Scholar]
- Monokroussos, A. “CONSOLIDATION WORK ON THE ROCK OF THE ACROPOLIS, B. The Southern Slope-Western Part” Ministry of Culture and Sports, Acropolis Restoration Service, Report; YSMA: Athens, Greece, 1994. (In Greek) [Google Scholar]
- Monokroussos, A. “CONSOLIDATION WORK ON THE ROCK OF THE ACROPOLIS, E. The Eastern Slope” Ministry of Culture and Sports, Acropolis Restoration Service, Report; YSMA: Athens, Greece, 1994. (In Greek) [Google Scholar]
- Vasuki, Y.; Holden, E.-J.; Kovesi, P.; Micklethwaite, S. Semi-automatic mapping of geological structures using UAV-based photogrammetric data: An image analysis approach. Comput. Geosci. 2014, 69, 22–32. [Google Scholar] [CrossRef]
- Muthukrishman, R.; Radha, M. Edge Detection Techniques for Image Segmentation. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 2011, 3, 259–267. [Google Scholar]
- Liu, J.D.; Fan, X.N.; Ding, P.H.; Zheng, Q.Y. Multi-instrument image edge detection algorithm based on improved Sobel operator. J. Sci. Technol. Eng. 2012, 12, 4691–4696. [Google Scholar]
- Han, L.; Tian, Y.; Qi, Q. Research on edge detection algorithm based on improved Sobel operator. MATEC Web Conf. 2020, 309, 03031. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Kaufman, A.; Gupta, M.M. Introduction to Fuzzy Arithmetic: Theory and Applications; Van Nostrand Reinhohld: New York, NY, USA, 1991; p. 384. [Google Scholar]
- Feizizadeh, B.; Blaschke, T. GIS-multicriteria decision analysis for landslide susceptibility mapping: Comparing three methods for the Urmia lake basin, Iran. Nat. Hazards 2013, 65, 2105–2128. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V.; Themistocleous, K.; Hadjimitsis, D.G. Risk assessment of cultural heritage sites clusters using satellite imagery and GIS: The case study of Paphos District, Cyprus. Nat. Hazards 2016, 83, S5–S20. [Google Scholar] [CrossRef]
- Zhu, A.-X.; Wang, R.; Qiao, J.; Qin, C.-Z.; Chen, Y.; Liu, J.; Du, F.; Lin, Y.; Zhu, T. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology 2014, 214, 128–138. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Roodposhti, M.S.; Jankowski, P.; Blaschke, T. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput. Geosci. 2014, 73, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Chalkias, C.; Polykretis, C.; Ferentinou, M.; Karymbalis, E. Integrating expert knowledge with statistical analysis for landslide susceptibility assessment at regional scale. Geosciences 2016, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Arvanitakis, M.; Monokroussos, D. Consolidation work on the sacred rock of the Acropolis, Athens, 1988. In Proceedings of the International Symposium Organized by the Greek National Group of IAEG, Engineering Geology of Ancient Works, Monuments and Historical Sites, Athens, Greece, 19–23 September 1988; Volume 3, pp. 1833–1837. [Google Scholar]
- Bordehore, L.J.; Riquelme, A.; Cano, M.; Tomás, R. Comparing manual and remote sensing field discontinuity collection used in kinematic stability assessment of failed rock slopes. Int. J. Rock Mech. Min. Sci. 2017, 97, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Bouchon, M.; Barker, J.S. Seismic response of a hill: The example of Tarzana, California. Bull. Seismol. Soc. Am. 1996, 86, 66–72. [Google Scholar] [CrossRef]
- Bouckovalas, G.D.; Papadimitriou, A.G. Numerical evaluation of slope topography effects on seismic ground motion. Soil Dyn. Earthq. Eng. 2005, 25, 547–558. [Google Scholar] [CrossRef]
- Stamatopoulos, C.A.; Bassanou, M.; Brennan, A.J.; Madabhushi, G. Mitigation of the seismic motion near the edge of cliff-type topographies. Soil Dyn. Earthq. Eng. 2007, 27, 1082–1100. [Google Scholar] [CrossRef]
Linguistic Variable | Crisp Numbers | Fuzzy Number |
---|---|---|
Very low importance | 1 | (0, 0, 0, 3) |
Low importance | 2 | (0, 3, 3, 5) |
Moderate importance | 3 | (3, 5, 5, 7) |
High importance | 4 | (5, 7, 7, 10) |
Very High Importance | 5 | (7, 10, 10, 10) |
Instability Related Variables | Expert A | Expert B | Expert C | Expert D | Expert E | Expert F | Defuzzified Values |
---|---|---|---|---|---|---|---|
Density of surface runoff elements | 3 | 4 | 3 | 3 | 4 | 4 | 6.166 |
Slope Angle | 4 | 5 | 4 | 4 | 5 | 4 | 7.889 |
Density of discontinuities | 3 | 4 | 4 | 3 | 3 | 3 | 5.778 |
Lithology | 5 | 4 | 5 | 5 | 5 | 5 | 8.722 |
Density of faults | 3 | 3 | 3 | 4 | 4 | 3 | 5.778 |
Orientation of the stratigraphy of the geological formations | 3 | 4 | 3 | 4 | 4 | 3 | 6.166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loupasakis, C.; Tsangaratos, P.; Gatsios, T.; Eleftheriou, V.; Parcharidis, I.; Soupios, P. Investigating the Stability of the Hill of the Acropolis of Athens, Greece, Using Fuzzy Logic and Remote Sensing Techniques. Remote Sens. 2023, 15, 1067. https://doi.org/10.3390/rs15041067
Loupasakis C, Tsangaratos P, Gatsios T, Eleftheriou V, Parcharidis I, Soupios P. Investigating the Stability of the Hill of the Acropolis of Athens, Greece, Using Fuzzy Logic and Remote Sensing Techniques. Remote Sensing. 2023; 15(4):1067. https://doi.org/10.3390/rs15041067
Chicago/Turabian StyleLoupasakis, Constantinos, Paraskevas Tsangaratos, Theodoros Gatsios, Vasiliki Eleftheriou, Issaak Parcharidis, and Panteleimon Soupios. 2023. "Investigating the Stability of the Hill of the Acropolis of Athens, Greece, Using Fuzzy Logic and Remote Sensing Techniques" Remote Sensing 15, no. 4: 1067. https://doi.org/10.3390/rs15041067
APA StyleLoupasakis, C., Tsangaratos, P., Gatsios, T., Eleftheriou, V., Parcharidis, I., & Soupios, P. (2023). Investigating the Stability of the Hill of the Acropolis of Athens, Greece, Using Fuzzy Logic and Remote Sensing Techniques. Remote Sensing, 15(4), 1067. https://doi.org/10.3390/rs15041067