Hyperspectral Anomaly Detection with Differential Attribute Profiles and Genetic Algorithms
Abstract
:1. Introduction
- (1)
- A novel coarse-to-fine framework is presented integrating the cross-subspace combination band selection, differential attribute profiles, and genetic algorithms for optimal spectral–spatial features’ automatic selection and joint detection.
- (2)
- A differential algorithm and threshold selection criteria are proposed for the four attribute descriptors to effectively protrude the anomaly objects and adapt to the detection of various size targets in the HSIs.
- (3)
- An intelligent optimization strategy via genetic algorithms and clustering method is designed, which selectively retain optimal profiles and guarantee a good tradeoff between the representable power of differential attribute profiles and their redundancy.
2. Related Work
2.1. Attribute Profile
2.2. Genetic Algorithms
3. Materials and Methods
3.1. Cross-Subspace Combination Band Selection
3.2. Feature Extraction with Differential Attribute Profiles
3.3. Optimal Differential Attribute Profile Selection and Fusion
4. Results
4.1. Hyperspectral DataSets
- (1)
- Gulfport Airport Dataset: This hyperspectral dataset was obtained by the AVIRIS sensor in the Gulfport airport, CA, USA. The airport landscape contains an airport runway, tarmac and greenery, and has 100 × 100 pixels with a wavelength range of 400–2500 nm. After the removal of more severe moisture and noisy bands, 191 bands are retained in the experiments. The anomaly objects are three airplanes of different sizes with 60 pixels. The proportion of anomaly pixels is 0.6% of all pixels in this HSI.
- (2)
- Cat Island Beach DataSet: It has 188 bands with the size of 150 rows and 150 lines captured by the AVIRIS sensor. The reference ground-truth map has been manually labeled, and the water absorption bands of the dataset have been removed. The beach scene mainly comprises one man-made reef with 19 pixels regarded as the anomaly objects. The proportion of anomaly pixels is 0.084% of all pixels.
- (3)
- Texas Coast Urban DataSet: The urban scene consists of 207 spectral channels and was captured by the AVIRIS sensor. This dataset is corrupted by serious strip noise, which results in challenges in the anomaly detection. The twenty building roofs with 155 pixels are regarded as anomalous materials in the image. The proportion of anomaly pixels is 1.55% of all pixels in this HSI.
- (4)
- Rochester Park Dataset: This benchmark dataset consists of 360 spectral channels and 400–2450 nm wavelength range. It was collected by a pushbroom SpecTIR sensor with 5 nm spectral resolution, which is a part of the park scene, Rochester, USA. Twelve panels containing 123 anomaly pixels are regarded as anomaly objects. The proportion of anomaly pixels is 1.23% of all pixels.
4.2. Quantitative Evaluation
4.3. Experimental Settings
4.4. Detection Performance
4.5. Parameter Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mei, X.; Ma, Y.; Li, C.; Fan, F.; Huang, J.; Ma, J. Robust GBM hyperspectral image unmixing with superpixel segmentation based low rank and sparse representation. Neurocomputing 2018, 275, 2783–2797. [Google Scholar] [CrossRef]
- Kang, X.; Li, C.; Li, S.; Lin, H. Classification of hyperspectral images by Gabor filtering based deep network. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 11, 1166–1178. [Google Scholar] [CrossRef]
- Xie, W.; Lei, J.; Liu, B.; Li, Y.; Jia, X. Spectral constraint adversarial autoencoders approach to feature representation in hyperspectral anomaly detection. Neural Netw. 2019, 119, 222–234. [Google Scholar] [CrossRef]
- Ghamisi, P.; Yokoya, N.; Li, J. Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 2017, 5, 37–78. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Liu, B.; Li, Y.; Lei, J.; Chang, C.-I.; He, G. Spectral adversarial feature learning for anomaly detection in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2352–2365. [Google Scholar] [CrossRef]
- Reed, I.S.; Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1760–1770. [Google Scholar] [CrossRef]
- Matteoli, S.; Veracini, T.; Diani, M.; Corsini, G. A locally adaptive background density estimator: An evolution for RX-based anomaly detectors. IEEE Geosci. Remote Sens. Lett. 2014, 11, 323–327. [Google Scholar] [CrossRef]
- Chang, C.I.; Chiang, S.S. Anomaly detection and classification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1314–1325. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Nasrabadi, N.M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 388–397. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, Y.; Zhang, Y. A Selective Kernel PCA Algorithm for Anomaly Detection in Hyperspectral Imagery. In Proceedings of the 2006 IEEE International Conference on Acoustics Speech and Signal Processing, Toulouse, France, 14–19 May 2006. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, B.; Ran, Q.; Gao, L.; Li, J.; Plaza, A. Weighted-RXD and linear filter-based RXD: Improving background statistics estimation for anomaly detection in hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2351–2366. [Google Scholar] [CrossRef]
- Zhao, R.; Du, B.; Zhang, L. A robust nonlinear hyperspectral anomaly detection approach. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 1227–1234. [Google Scholar] [CrossRef]
- Tao, R.; Zhao, X.; Li, W.; Li, H.; Du, Q. Hyperspectral anomaly detection by fractional Fourier entropy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4920–4929. [Google Scholar] [CrossRef]
- Wei, L.; Qian, D. Collaborative representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1463–1474. [Google Scholar] [CrossRef]
- Ma, N.; Peng, Y.; Wang, S. A fast recursive collaboration representation anomaly detector for hyperspectral image. IEEE Geosci. Remote Sens. Lett. 2019, 16, 588–592. [Google Scholar] [CrossRef]
- Wu, Z. Hyperspectral anomaly detection with relaxed collaborative representation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Simultaneous joint sparsity model for target detection in hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2011, 8, 676–680. [Google Scholar] [CrossRef]
- Zhao, X.; Li, W.; Zhang, M.; Tao, R.; Ma, P. Adaptive iterated shrinkage thresholding-based Lp-norm sparse representation for hyperspectral imagery target detection. Remote Sens. 2020, 12, 3991. [Google Scholar] [CrossRef]
- Huang, J.; Liu, K.; Li, X. Locality constrained low rank representation and automatic dictionary learning for hyperspectral anomaly detection. Remote Sens. 2022, 14, 1327. [Google Scholar] [CrossRef]
- Zhao, R.; Du, B.; Zhang, L. Hyperspectral anomaly detection via a sparsity score estimation framework. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3208–3222. [Google Scholar] [CrossRef]
- Yao, W.; Li, L.; Ni, H.; Li, W.; Tao, R. Hyperspectral anomaly detection based on improved RPCA with non-convex regularization. Remote Sens. 2022, 14, 1343. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, M.; Feng, S. Hyperspectral target detection method based on nonlocal self-similarity and rank-1 tensor. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Banerjee, A.; Burlina, P.; Diehl, C. A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2282–2291. [Google Scholar] [CrossRef]
- Li, S.; Zhang, K.; Duan, P.; Kang, X. Hyperspectral anomaly detection with kernel isolation forest. IEEE Trans. Geosci. Remote Sens. 2020, 58, 319–329. [Google Scholar] [CrossRef]
- Song, X.; Aryal, S.; Ting, K.M.; Liu, Z.; He, B. Spectral-spatial anomaly detection of hyperspectral data based on improved isolation forest. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Du, B.; Zhang, L. Hyperspectral Anomaly Detection Based on Machine Learning: An Overview. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3351–3364. [Google Scholar] [CrossRef]
- Zhao, C.; Li, C.; Feng, S.; Li, W. Spectral-spatial anomaly detection via collaborative representation constraint stacked autoencoders for hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, L.; Shi, W.; Wang, W.; Wu, J. Self-attention memory-augmented wavelet-CNN for anomaly detection. IEEE Trans. Circuits Syst. Video Technol. 2022. early access. [Google Scholar] [CrossRef]
- Yousefan, M.; Najafabadi, H.E.; Amirkhani, H. Deep anomaly detection in hyperspectral images based on membership maps and object area filtering. Expert Syst. Appl. 2022, 191, 116200. [Google Scholar] [CrossRef]
- Arisoy, S.; Nasrabadi, N.M.; Kayabol, K. Unsupervised Pixel-Wise Hyperspectral Anomaly Detection via Autoencoding Adversarial Networks. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5502905. [Google Scholar] [CrossRef]
- Xie, W. Unsupervised spectral mapping and feature selection for hyperspectral anomaly detection. Neural Netw. 2020, 132, 144–154. [Google Scholar] [CrossRef]
- Fu, X.; Jia, S.; Zhuang, L.; Xu, M.; Zhou, J.; Li, Q. Hyperspectral Anomaly Detection via Deep Plug-and-Play Denoising CNN Regularization. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9553–9568. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Zhang, L.; Zhong, Y. Auto-AD: Autonomous hyperspectral anomaly detection network based on fully convolutional autoencoder. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5503314. [Google Scholar] [CrossRef]
- Mura, M.D.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Huang, X.; Guan, X.; Benediktsson, J.A.; Zhang, L.; Li, J.; Plaza, A.; Mura, M.D. Multiple morphological profiles from multicomponent-base images for hyperspectral image classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2014, 7, 4653–4669. [Google Scholar] [CrossRef]
- Pedergnana, M.; Marpu, P.R.; Mura, M.D.; Benediktsson, J.A.; Bruzzone, L. A novel technique for optimal feature selection in attribute profiles based on genetic algorithms. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3514–3528. [Google Scholar] [CrossRef]
- Ghamisi, P.; Mura, M.D.; Benediktsson, J.A. A survey on spectral-spatial classification techniques based on attribute profiles. IEEE Trans.Geosci. Remote Sens. 2015, 53, 2335–2353. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Patra, S. An unsupervised technique for optimal feature selection in attribute profiles for spectral-spatial classification of hyperspectral images. ISPRS J. Photogram. Remote Sens. 2018, 138, 139–150. [Google Scholar] [CrossRef]
- Fang, L.; He, N.; Li, S.; Ghamisi, P.; Benediktsson, J.A. Extinction profiles fusion for hyperspectral images classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1803–1815. [Google Scholar] [CrossRef]
- Mura, M.D.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int. J. Rem. Sens. 2010, 31, 5975–5991. [Google Scholar] [CrossRef]
- Huang, J.; Liu, K.; Xu, M.; Perc, M.; Li, X. Background purification framework with extended morphological attribute profile for hyperspectral anomaly detection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 8113–8124. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, X.; Li, S.; Li, K.; Li, J.; Benediktsson, J.A. Hyperspectral anomaly detection with attribute and edge-preserving filters. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5600–5611. [Google Scholar] [CrossRef]
- Li, S.; Zhang, K.; Hao, Q.; Duan, P.; Kang, X. Hyperspectral anomaly detection with multiscale attribute and edge-preserving filters. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1605–1609. [Google Scholar] [CrossRef]
- Pesaresi, M.; Benediktsson, J.A. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Breen, E.J.; Jones, R. Attribute openings, thinnings, and granulometries. Comp. Vis. Image Understand. 1996, 64, 377–389. [Google Scholar] [CrossRef]
- Jang, J.-S.R.; Sung, C.-T.; Mizutani, E. Neuro-Fuzzy and Soft Computing; Prentice-Hall: Hoboken, NJ, USA, 1997. [Google Scholar]
- MartÍnez-UsÓ, A.; Pla, F.; Sotoca, J.M.; GarcÍa-Sevilla, P. Clustering-based hyperspectral band selection using information measures. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4158–4171. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, Y.; Zhang, Y. A Selective KPCA Algorithm Based on High-Order Statistics for Anomaly Detection in Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2008, 5, 43–47. [Google Scholar] [CrossRef]
Scene | Captured Place | Spatial Resolution | Size | Sensor |
---|---|---|---|---|
Airport | Gulfport | 3.4 m/pixel | 100 × 100 × 191 | AVIRIS |
Beach | Cat Island | 17.2 m/pixel | 150 × 150 × 188 | AVIRIS |
Urban | Texas Coast | 17.2 m/pixel | 100 × 100 × 207 | AVIRIS |
Park | Rochester | 1 m/pixel | 100 × 100 × 360 | SpecTIR |
Dataset | DAPGA | DAPKPCA | LRX | CRD | AED | KIFD | DeCNN-AD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | σ | ωin | ωout | ωin | ωout | κ | δs | δr | ζ | K | β | λ | |
Airport | 40 | 10 | 11 | 13 | 13 | 17 | 64 | 5 | 0.5 | 200 | 6 | 0.1 | 0.3 |
Beach | 40 | 10 | 3 | 5 | 3 | 5 | 25 | 5 | 0.5 | 150 | 6 | 0.01 | 0.1 |
Urban | 15 | 20 | 5 | 9 | 7 | 9 | 16 | 5 | 3 | 50 | 4 | 0.2 | 0.1 |
Park | 50 | 10 | 15 | 17 | 13 | 15 | 16 | 5 | 1 | 100 | 4 | 0.01 | 0.2 |
Dataset | DAPGA | DAPKPCA | RX | LRX | CRD | AED | KIFD | DeCNN-AD |
---|---|---|---|---|---|---|---|---|
Airport | 0.9986 | 0.9957 | 0.9526 | 0.9538 | 0.9802 | 0.9953 | 0.9944 | 0.9963 |
Beach | 0.9996 | 0.9984 | 0.9807 | 0.9956 | 0.9937 | 0.9974 | 0.9928 | 0.9799 |
Urban | 0.9993 | 0.9988 | 0.9946 | 0.9231 | 0.9461 | 0.9696 | 0.9121 | 0.9366 |
Park | 0.9981 | 0.9957 | 0.9840 | 0.9871 | 0.9958 | 0.9899 | 0.9917 | 0.9794 |
Average | 0.9989 | 0.9972 | 0.9780 | 0.9649 | 0.9790 | 0.9881 | 0.9728 | 0.9730 |
Dataset | DAPGA | DAPKPCA | RX | LRX | CRD | AED | KIFD | DeCNN-AD |
---|---|---|---|---|---|---|---|---|
Airport | 22.75 | 10.91 | 0.14 | 49.19 | 83.28 | 0.26 | 127.90 | 543.07 |
Beach | 24.51 | 136.83 | 0.25 | 86.97 | 97.53 | 0.69 | 113.22 | 963.81 |
Urban | 21.36 | 13.74 | 0.15 | 59.38 | 63.60 | 0.89 | 85.15 | 364.71 |
Park | 25.04 | 14.59 | 0.27 | 239.05 | 257.21 | 0.28 | 96.11 | 274.96 |
Average | 23.42 | 44.02 | 0.20 | 108.65 | 125.41 | 0.53 | 105.60 | 536.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yang, M.; Zhang, T.; Tian, D.; Wang, H.; Yao, D.; Meng, L.; Shen, H. Hyperspectral Anomaly Detection with Differential Attribute Profiles and Genetic Algorithms. Remote Sens. 2023, 15, 1050. https://doi.org/10.3390/rs15041050
Wang H, Yang M, Zhang T, Tian D, Wang H, Yao D, Meng L, Shen H. Hyperspectral Anomaly Detection with Differential Attribute Profiles and Genetic Algorithms. Remote Sensing. 2023; 15(4):1050. https://doi.org/10.3390/rs15041050
Chicago/Turabian StyleWang, Hanyu, Mingyu Yang, Tao Zhang, Dapeng Tian, Hao Wang, Dong Yao, Lingtong Meng, and Honghai Shen. 2023. "Hyperspectral Anomaly Detection with Differential Attribute Profiles and Genetic Algorithms" Remote Sensing 15, no. 4: 1050. https://doi.org/10.3390/rs15041050
APA StyleWang, H., Yang, M., Zhang, T., Tian, D., Wang, H., Yao, D., Meng, L., & Shen, H. (2023). Hyperspectral Anomaly Detection with Differential Attribute Profiles and Genetic Algorithms. Remote Sensing, 15(4), 1050. https://doi.org/10.3390/rs15041050