Non-Local Means De-Speckling Based on Multi-Directional Local Plane Inclination Angle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Speckle Noise
2.2. Non-Local Means Filter
2.3. Proposed Weight Function
2.3.1. Local Plane Inclination Angle
2.3.2. Multi-Directional LPIA
2.3.3. Weight Function Using MDLPIA
2.4. Proposed Filter
- Calculate the MDLPIA of each position of the global SAR image using Equations (8) and (9);
- Calculate the weight of each SC and RC in the search cube using Equations (10) and (11);
- Perform the MDLPIA-NLM filter in Equation (12).
3. Results
3.1. Experimental Data
3.2. Experimental Methods
3.3. Evaluation Methods
3.3.1. Equivalent Number of Looks
3.3.2. Speckle-Suppression Index
3.3.3. Edge-Saving Index
3.3.4. Structural Similarity
3.3.5. M-Index
3.3.6. Kullback–Leibler Divergence
3.4. Filtering Experiment
3.4.1. Simulated Data
3.4.2. Real SAR Data
- 1.
- GF-3 SAR Data
- 2.
- TerraSAR-X SAR Data
- 3.
- RadarSAT-2 SAR Data
- 4.
- ALOS-2 SAR Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, F.C.; Zhuo, C.C.; Liu, W.S.; Liu, Z.H. Pixel Difference Function and Local Entropy-Based Speckle Reducing Anisotropic Diffusion. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5229516. [Google Scholar] [CrossRef]
- Yuan, Y.; Guan, J.; Feng, P.M.; Wu, Y.X. A Practical Solution for SAR Despeckling With Adversarial Learning Generated Speckled-to-Speckled Images. IEEE Geosci. Remote Sens. Let. 2022, 19, 4004705. [Google Scholar] [CrossRef]
- Sun, Y.L.; Lei, L.; Guan, D.D.; Li, X.; Kuang, G.Y. SAR Image Speckle Reduction Based on Nonconvex Hybrid Total Variation Model. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1231–1249. [Google Scholar] [CrossRef]
- Lin, H.X.; Zhuang, Y.H.; Huang, Y.; Ding, X.H. Unpaired Speckle Extraction for SAR Despeckling. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5201014. [Google Scholar] [CrossRef]
- Chen, S.W.; Cui, X.C.; Wang, X.S.; Xiao, S.P. Speckle-Free SAR Image Ship Detection. IEEE Trans. Image Process. 2021, 30, 5969–5983. [Google Scholar] [CrossRef]
- Ma, X.S.; Xu, J.G.; Wu, P.H.; Kong, P. Oil Spill Detection Based on Deep Convolutional Neural Networks Using Polarimetric Scattering Information from Sentinel-1 SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4204713. [Google Scholar] [CrossRef]
- Liu, S.Q.; Lei, Y.; Zhang, L.Y.; Li, B.; Hu, W.M.; Zhang, Y.D. MRDDANet: A Multiscale Residual Dense Dual Attention Network for SAR Image Denoising. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5214213. [Google Scholar] [CrossRef]
- Fracastoro, G.; Magli, E.; Poggi, G.; Scarpa, G.; Valsesia, D.; Verdoliva, L. Deep Learning Methods for Synthetic Aperture Radar Image Despeckling: An overview of trends and perspectives. IEEE Geosci. Remote Sens. Mag. 2021, 9, 29–51. [Google Scholar] [CrossRef]
- Lee, J.S.; Wen, J.H.; Ainsworth, T.L.; Chen, K.S.; Chen, A.J. Improved Sigma Filter for Speckle Filtering of SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar]
- Fatnassi, S.; Yahia, M.; Ali, T.; Mortula, M.M. SAR Speckle Filtering Using Hybrid NonLocal Sigma Filter. In Proceedings of the 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 22–25 March 2021. [Google Scholar]
- Kuan, D.T.; Sawchuk, A.A.; Strand, T.C.; Chavel, P. Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise. IEEE Trans. Pattern Anal. 1985, 2, 165–177. [Google Scholar] [CrossRef]
- Lee, J.S. Digital Image Enhancement and Noise Filtering by Use of Local Statistics. IEEE Trans. Pattern Anal. 1980, 2, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Nisha, S.S.; Raja, S.P. Multiscale Transform and Shrinkage Thresholding Techniques for Medical Image Denosing-Performance Evaluation. Cybern. Inf. Technol. 2020, 20, 130–146. [Google Scholar]
- Seixasleal, A.; Paiva, H.M. A New Wavelet Family for Speckle Noise Reduction in Medical Ultrasound Images. Measurement 2019, 140, 572–581. [Google Scholar]
- Liu, S.; Hu, Q.; Li, P.; Zhao, J.; Liu, M.; Zhu, Z. Speckle Suppression based on Weighted Nuclear Norm Minimization and Grey Theory. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2700–2708. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, F.C.; Zhang, Q.J.; Xu, K.; Jia, P.; Hao, X.Y. Speckle Reduction by Directional Coherent Anisotropic Diffusion. Remote Sens. 2019, 11, 2768. [Google Scholar] [CrossRef]
- Guo, F.C.; Zhang, G.; Zhang, Q.J.; Zhao, R.S.; Deng, M.J.; Xu, K. Speckle Suppression by Weighted Euclidean Distance Anisotropic Diffusion. Remote Sens. 2018, 10, 722. [Google Scholar] [CrossRef]
- Guo, F.C.; Zhang, G.; Zhang, Q.J.; Zhao, R.S.; Deng, M.J.; Xu, K.; Jia, P.; Hao, X.Y. Fusion Despeckling based on Surface Variation Anisotropic Diffusion Filter and Ratio Image Filter. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2398–2411. [Google Scholar] [CrossRef]
- Aja-Fernandez, S.; Alberola-Lopez, C. On the Estimation of the Coefficient of Variation for Anisotropic Diffusion Speckle Filtering. IEEE Trans. Image Process. 2006, 15, 2694–2701. [Google Scholar] [CrossRef] [PubMed]
- Buades, A.; Coll, B.; Morel, J.-M. A Non-Local Algorithm for Image Denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 60–65. [Google Scholar]
- Deledalle, C.-A.; Denis, L.; Tupin, F.; Reigber, A.; Jager, M. NL-SAR: A Unified Nonlocal Framework for Resolution-Preserving (Pol)(In)SAR Denoising. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2021–2038. [Google Scholar] [CrossRef]
- Jia, M.; Wang, L. Novel Class-Relativity Non-Local Means with Principal Component Analysis for Multitemporal SAR Image Change Detection. Int. J. Remote Sens. 2018, 39, 1068–1091. [Google Scholar] [CrossRef]
- Penna, P.A.A.; Mascarenhas, N.D.A. (Non-) Homomorphic Approaches to Denoise Intensity SAR Images with Non-Local Means and Stochastic Distances. Comput. Geosci. 2018, 111, 127–138. [Google Scholar] [CrossRef]
- Pepe, A. A 3D Space-Time Non-Local Mean Filter (NLMF) for Land Changes Retrieval with Synthetic Aperture Radar Images. Remote Sens. 2022, 14, 5933. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.M.; Chen, Y.J.; Meng, D.Y.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.X.; Zhuang, Y.D.; Huang, Y.; Ding, X.H. Self-Supervised SAR Despeckling Powered by Implicit Deep Denoiser Prior. IEEE Geosci. Remote Sens. Let. 2022, 19, 4514705. [Google Scholar]
- Dalsasso, E.; Denis, L.; Tupin, F. As If by Magic: Self-Superivised Training of Deep Despeckling Networks With MERLIN. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4704713. [Google Scholar] [CrossRef]
- Mullissa, A.G.; Marcos, D.; Tuia, D.; Herold, M.; Reiche, J. DeSpeckNet: Generalizing Deep Learning-Based SAR Image Despeckling. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5200315. [Google Scholar] [CrossRef]
- Ma, X.S.; Wang, C.; Yin, Z.X.; Wu, P.H. SAR Image Despeckling by Noisy Reference-based Deep Learning Method. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8807–8818. [Google Scholar] [CrossRef]
- Liu, S.Q.; Gao, L.; Wang, M.H.; Hu, Q.; Ma, Z.L.; Zhang, Y.D. SAR Speckle Removal Using Hybrid Frequency Modulations. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3956–3966. [Google Scholar] [CrossRef]
- Liu, S.Q.; Liu, T.; Gao, L.L.; Li, H.L.; Hu, Q.; Zhao, J.; Wang, C. Convolutional Neural Network and Guided Filtering for SAR Image Denoising. Remote Sens. 2019, 11, 702. [Google Scholar] [CrossRef]
- Shen, H.F.; Zhou, C.C.; Li, J.; Yuan, Q.Q. SAR Image Despeckling Employing a Recursive Deep CNN Prior. IEEE Trans. Geosci. Remote Sens. 2021, 59, 273–286. [Google Scholar] [CrossRef]
- Li, C.S.; Yu, Z.; Chen, J. Overview of Techniques for Improving High-Resolution Spaceborne SAR Imaging and Image Quality. J. Radars 2019, 8, 717–731. [Google Scholar]
- Wang, X.; Meng, Z.; Chen, S.; Feng, Z.; Li, X.; Guo, T.; Wang, C.; Zheng, X. A Block-Scale FFT Filter Based on Spatial Autocorrelation Features of Speckle Noise in SAR Image. Remote Sens. 2023, 15, 247. [Google Scholar] [CrossRef]
- Deledalle, C.A.; Denis, L.; Tupin, F. Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights. IEEE Trans. Image Process. 2009, 18, 2661–2672. [Google Scholar] [CrossRef] [PubMed]
- Jojy, C.; Nair, M.S.; Subrahmanyam, G.R.K.S.; Riji, R. Discontinuity Adaptive Non-Local Means with Importance Sampling Unscented Kalman Filter for De-Speckling SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1964–1970. [Google Scholar] [CrossRef]
- Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L. A Nonlocal SAR Image Denoising Algorithm Based on LLMMSE Wavelet Shrinkage. IEEE Trans. Geosci. Remote Sens. 2012, 50, 606–616. [Google Scholar] [CrossRef]
- Cozzolino, D.; Parrilli, S.; Scarpa, G.; Poggi, G.; Verdoliva, L. Fast Adaptive Nonlocal SAR Despeckling. IEEE Geosci. Remote Sens. Lett. 2014, 11, 524–528. [Google Scholar] [CrossRef]
- Wu, J.; Liu, F.; Hao, H.; Li, L.; Jiao, L.; Zhang, X. A Nonlocal Means for Speckle Reduction of SAR Image With Multiscale-Fusion Based Steerable Kernel Function. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1646–1650. [Google Scholar] [CrossRef]
- Ma, W.; Xin, Z.; Liao, G.; Sun, Y.; Wang, Z.; Xuan, J. Sub-Region Non-Local Mean Denoising Algorithm of Synthetic Aperture Radar Images Based on Statistical Characteristics. IET Image Process. 2022, 16, 2665–2679. [Google Scholar] [CrossRef]
- Shamsoddini, A.; Trinder, J.C. Image Texture Preservation in Speckle Noise Suppression. In Proceedings of the International Society for Photogrammetry and Remote Sensing Commission VII Symposium, Vienna, Austria, 5–7 July 2010; pp. 239–244. [Google Scholar]
- Zhang, W.G.; Liu, F.; Jiao, L.C. SAR Image Despeckling via Bilateral Filtering. Electron. Lett. 2009, 45, 781–783. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Gomez, L.; Ospina, R.; Frery, A. Unassisted Quantitative Evaluation of Despeckling Filters. Remote Sens. 2017, 9, 389. [Google Scholar] [CrossRef] [Green Version]
Sensors | Bands | Resolution | Polarization | Number of Looks |
---|---|---|---|---|
GF-3 | C | 3 | VV | Single |
TerraSAR-X | X | 3 | HH | Single |
RadarSAT-2 | C | 8 | HV | Single |
ALOS-2 | L | 6 | HH | Single |
Filters | ENL + Increased 1 | SSI | ESI | SSIM | M-Index | KLD |
---|---|---|---|---|---|---|
None | 3.70 + 0.00 | - | - | - | - | - |
DPAD | 74.39 + 19.11 | 0.59 | 0.14 | 0.74 | 6.26 | 2.62 |
EnLee | 273.46 + 72.91 | 0.53 | 0.12 | 0.51 | 10.84 | 2.37 |
SAR-BM3-D | 1054.02 + 283.87 | 0.55 | 0.10 | 0.55 | 20.86 | 2.76 |
FANS | 1051.14 + 283.09 | 0.55 | 0.06 | 0.51 | 19.06 | 2.66 |
PPB | 539.38 + 144.78 | 0.53 | 0.27 | 0.56 | 24.41 | 2.15 |
DnCNN | 544.53 + 146.17 | 0.51 | 0.08 | 0.37 | 97.17 | 2.76 |
NL-means | 417.20 + 111.76 | 0.52 | 0.20 | 0.50 | 7.46 | 2.17 |
MDLPIA-NLM | 621.20 + 166.89 | 0.51 | 0.28 | 0.56 | 6.10 | 2.13 |
Filters | ENL + Increased 1 | SSI | ESI | SSIM | M-Index |
---|---|---|---|---|---|
None | 2.78 + 0.00 | - | - | - | - |
DPAD | 14.00 + 4.04 | 0.72 | 0.32 | 0.81 | 13.51 |
EnLee | 24.70 + 7.88 | 0.71 | 0.16 | 0.78 | 10.95 |
SAR-BM3-D | 10.18 + 2.66 | 0.75 | 0.35 | 0.84 | 32.05 |
FANS | 16.30 + 4.86 | 0.72 | 0.32 | 0.81 | 12.42 |
PPB | 50.54 + 17.18 | 0.59 | 0.23 | 0.79 | 13.76 |
DnCNN | 186.56 + 66.11 | 0.51 | 0.20 | 0.78 | 15.92 |
NL-means | 63.83 + 21.96 | 0.54 | 0.09 | 0.71 | 9.95 |
MDLPIA-NLM | 64.29 + 22.13 | 0.51 | 0.35 | 0.80 | 8.57 |
Filters | ENL + Increased 1 | SSI | ESI | SSIM | M-Index |
---|---|---|---|---|---|
None | 3.34 + 0.00 | - | - | - | - |
DPAD | 19.87 + 4.95 | 0.84 | 0.34 | 0.82 | 10.43 |
EnLee | 70.2520.03 | 0.89 | 0.23 | 0.62 | 13.96 |
SAR-BM3-D | 12.96 + 2.88 | 0.83 | 0.50 | 0.84 | 28.60 |
FANS | 54.78 + 15.40 | 0.85 | 0.28 | 0.77 | 10.61 |
PPB | 114.53 + 33.29 | 0.72 | 0.27 | 0.67 | 17.78 |
DnCNN | 228.75 + 67.49 | 0.63 | 0.68 | 0.38 | 21.66 |
NL-means | 105.11 + 30.47 | 0.77 | 0.19 | 0.60 | 10.43 |
MDLPIA-NLM | 116.17 + 33.78 | 0.50 | 0.55 | 0.82 | 9.75 |
Filters | ENL + Increased 1 | SSI | ESI | SSIM | M-Index |
---|---|---|---|---|---|
None | 3.35 + 0.00 | - | - | - | - |
DPAD | 46.22 + 12.80 | 0.74 | 0.26 | 0.77 | 16.60 |
EnLee | 155.60 + 45.45 | 0.70 | 0.13 | 0.57 | 32.53 |
SAR-BM3-D | 63.37 + 17.92 | 0.73 | 0.31 | 0.85 | 13.06 |
FANS | 102.95 + 29.73 | 0.71 | 0.20 | 0.71 | 13.57 |
PPB | 335.17 + 99.05 | 0.59 | 0.27 | 0.61 | 30.99 |
DnCNN | 561.05 + 166.48 | 0.59 | 0.25 | 0.33 | 12.54 |
NL-means | 50.40 + 14.04 | 0.88 | 0.60 | 0.89 | 37.68 |
MDLPIA-NLM | 239.16 + 70.39 | 0.52 | 0.50 | 0.88 | 9.18 |
Filters | ENL + Increased 1 | SSI | ESI | SSIM | M-Index |
---|---|---|---|---|---|
None | 3.60 + 0.00 | - | - | - | - |
DPAD | 130.71 + 35.31 | 0.81 | 0.20 | 0.78 | 79.85 |
EnLee | 142.55 + 38.60 | 0.78 | 0.12 | 0.60 | 37.22 |
SAR-BM3-D | 374.77 + 103.10 | 0.79 | 0.20 | 0.69 | 28.41 |
FANS | 183.02 + 49.83 | 0.76 | 0.16 | 0.66 | 29.65 |
PPB | 319.83 + 87.84 | 0.70 | 0.16 | 0.55 | 33.65 |
DnCNN | 172.93 + 47.04 | 0.70 | 0.13 | 0.34 | 26.22 |
NL-means | 171.28 + 46.58 | 0.79 | 0.23 | 0.74 | 58.46 |
MDLPIA-NLM | 184.68 + 50.30 | 0.69 | 0.25 | 0.76 | 27.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Tang, H.; Liu, W. Non-Local Means De-Speckling Based on Multi-Directional Local Plane Inclination Angle. Remote Sens. 2023, 15, 1029. https://doi.org/10.3390/rs15041029
Guo F, Tang H, Liu W. Non-Local Means De-Speckling Based on Multi-Directional Local Plane Inclination Angle. Remote Sensing. 2023; 15(4):1029. https://doi.org/10.3390/rs15041029
Chicago/Turabian StyleGuo, Fengcheng, Haoran Tang, and Wensong Liu. 2023. "Non-Local Means De-Speckling Based on Multi-Directional Local Plane Inclination Angle" Remote Sensing 15, no. 4: 1029. https://doi.org/10.3390/rs15041029
APA StyleGuo, F., Tang, H., & Liu, W. (2023). Non-Local Means De-Speckling Based on Multi-Directional Local Plane Inclination Angle. Remote Sensing, 15(4), 1029. https://doi.org/10.3390/rs15041029