Remote Sensing Inversion and Mapping of Typical Forest Stand Age in the Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Forest Stand Age and Forest Cover Data
2.2.2. Optical Remote Sensing Data
2.3. Methods
2.3.1. Selection of Vegetation Indices
2.3.2. Exploration of Response of Canopy Spectra to Forest Stand Age
2.3.3. Inversion Model of Forest Stand Age
2.3.4. Forest Stand Age Mapping and Accuracy Assessment
3. Results
3.1. Characteristics of Spectral Changes in Different Forest Stand Ages
3.1.1. Seasonal Variation Patterns of Canopy Spectra
3.1.2. Spectral Change Patterns of Different Forest Stand Ages
3.2. Relationship between Forest Stand Age and Canopy Spectral Characteristics
3.2.1. Relationship between Canopy Reflectance and Forest Stand Age
3.2.2. Relationship between Vegetation Indices and Forest Stand Age
3.3. Establish of Forest Stand Age Inversion Model in Loess Plateau
3.3.1. Spectral Feature Extraction Using PCA
3.3.2. Establishment of Forest Stand Age Inversion Model Using MLR Model
3.3.3. Establishment of Forest Stand Age Inversion Model Using RF Model
3.4. Comparison of Accuracy of Remote Sensing Inversion Models for Forest Stand Age
3.5. Spatial Distribution of Forest Stand Age in Loess Plateau
4. Discussion
4.1. Accuracy Evaluation and Uncertainty Analysis of Inversion Models
4.2. Spatial Inconsistency between the Observed Sample and Remote Sensing Data Significantly Affects the Accuracy of the Model
4.3. Background Reflectance Affects the Accuracy of Model
5. Conclusions
- (1)
- The canopy reflectance of different forest stand ages has a significant change pattern, and the older the forest stands, the lower the NIR reflectance; the relationships between SR, NIRv, NDVI, GVI and forest stand age were more nonlinear than linear.
- (2)
- Principal component analysis (PCA) of canopy spectral information showed that SR, NDVI and red edge (B5) could explain 98% of all spectral information. SR, NDVI and B5 were used to construct MLR and RF models, and the RF model was found to have high estimation accuracy (R2 = 0.63).
- (3)
- The accuracy of the models was evaluated using reference data, and it was found that the accuracy of the RF model (R2 = 0.63) was higher than that of the MLR model (R2 = 0.61), but both models underestimated the forest stand age when the forest stand age was greater than 50a, which may be caused by the saturation of the reflectance of the old forest canopy. The RF model was used to generate a dataset of forest stand age, and it was found that the forest is dominated by young forests (<20a), accounting for 38.26% of the forest area. This study not only improves the method of forest stand age estimation, but also provides data support for vegetation construction in the Loess Plateau, which are the key data for carbon sink simulation of the regional ecosystem.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Baishya, R.; Barik, S. Estimation of tree biomass, carbon pool and net primary production of an old-growth Pinus kesiya Royle ex. Gordon forest in north-eastern India. Ann. For. Sci. 2021, 68, 727–736. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Shang, R.; Qin, Y.; Chen, H. High-resolution mapping of forest canopy height using machine learning by coupling icesat-2 lidar with sentinel-1, sentinel-2 and landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102163. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Y.; Wang, X.; Liu, Y.; Piao, S. Mapping spatial distribution of forest age in China. Earth Space Sci. 2017, 4, 108–116. [Google Scholar] [CrossRef]
- Tang, S.; Tian, Q.; Xu, K.; Xu, N.; Yue, J. Age information retrieval of Larix gmelinii forest using Sentinel-2 data. Natl. Remote Sens. Bull. 2020, 24, 1511–1524. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, H.; Liu, S.; Zhou, G.; Fang, J.; Yu, G.; Tang, X.; Wang, W.; Yan, J.; Wang, G.; et al. Mapping forest type and age in China’s plantations. Sci. Total Environ. 2020, 744, 140790. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Jin, Y.F.; Brown, P. Automatic mapping of planting year for tree crops with Landsat satellite to time series stacks. ISPRS J. Photogramm. Remote Sens. 2019, 151, 176–188. [Google Scholar] [CrossRef]
- Grant, L. Diffuse and specular characteristics of leaf reflectance. Remote Sens. Environ. 1987, 22, 309–322. [Google Scholar] [CrossRef]
- Jensen, J.R.; Qiu, F.; Ji, M.H. Predictive modelling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensor data. Int. J. Remote Sens. 1999, 20, 2805–2822. [Google Scholar]
- Chen, G.; Thill, J.C.; Anantsuksomsri, S.; Tontisirin, N.; Tao, R. Stand age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel-and object-based tree growth model and annual Landsat time series. ISPRS J. Photogramm. Remote Sens. 2018, 144, 94–104. [Google Scholar] [CrossRef]
- Chen, B.Q.; Cao, J.H.; Wang, J.K.; Wu, Z.X.; Tao, Z.L.; Chen, J.M.; Yang, C.; Xie, G.S. Estimation of rubber stand age in typhoon and chilling injury afflicted area with Landsat TM data: A case study in Hainan Island, China. For. Ecol. Manag. 2012, 274, 222–230. [Google Scholar] [CrossRef]
- Gadow, K.V.; Hui, G. Modelling Forest development. For. Sci. 1999, 57, 1146–1158. [Google Scholar]
- Sharma, M.; Parton, J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. For. Ecol. Manag. 2007, 249, 187–198. [Google Scholar] [CrossRef]
- Lin, X.; Shang, R.; Chen, J.M.; Zhao, G.; Zhang, X.; Huang, Y.; Yu, G.; He, N.; Xu, L.; Jiao, W. High-resolution forest age mapping based on forest height maps derived from GEDI and ICESat-2 space-borne lidar data. Agric. For. Meteorol. 2023, 339, 109592. [Google Scholar] [CrossRef]
- Maltman, J.C.; Hermosilla, T.; Wulder, M.A.; Coops, N.C.; White, J.C. Estimating and mapping forest age across Canadas forested ecosystems. Remote Sensing. Environ. 2023, 290, 113529. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Schleeweis, K.; Thomas, N.; Masek, J.G.; Zhu, Z. Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States. Remote Sens. Environ. 2009, 113, 1430–1442. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, W.Q.; Yang, J.; Zhang, W.D.; Yan, Y.; Yan, Q.L. Reconstruction of stand-replacement disturbance and stand age of Chinese fir plantation based on a Landsat time series in Huitong County, Hunan. Chin. J. Ecol. 2018, 37, 3467. [Google Scholar]
- Diao, J.; Feng, T.; Li, M.; Zhu, Z.; Liu, J.; Biging, G.; Zheng, G.; Shen, W.; Wang, H.; Wang, J.; et al. Use of vegetation change tracker, spatial analysis, and random forest regression to assess the evolution of plantation stand age in Southeast China. Ann. For. Sci. 2020, 77, 27. [Google Scholar] [CrossRef]
- Fujiki, S.; Okada, K.I.; Nishio, S.; Kitayama, K. Estimation of the stand ages of tropical secondary forests after shifting cultivation based on the combination of WorldView-2 and time-series Landsat images. ISPRS J. Photogramm. Remote Sens. 2016, 119, 280–293. [Google Scholar] [CrossRef]
- Guo, Q.; Ren, H. Productivity as related to diversity and age in planted versus natural forests. Glob. Ecol. Biogeogr. 2014, 23, 1461–1471. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Hu, L.; Yu, L.; Clinton, N.; Huang, H.; Yang, J.; Gong, P. A Circa 2010 Thirty Meter Resolution Forest Map for China. Remote Sens. 2014, 6, 5325–5343. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E.; Anderson, C.B.; Knapp, D.E. Quantifying forest canopy traits: Imaging spectroscopy versus field survey. Remote Sens. Environ. 2015, 158, 15–27. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Asner, G.P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 2009, 113, S78–S91. [Google Scholar] [CrossRef]
- Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jędrzejewska, B.; Lima, M.; Kausrud, K. The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Brown, L.; Chen, J.M.; Leblanc, S.G.; Cihlar, J. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: An image and model analysis. Remote Sens. Environ. 2000, 71, 16–25. [Google Scholar] [CrossRef]
- Zeng, Y.; Hao, D.; Badgley, G.; Damm, A.; Rascher, U.; Ryu, Y.; Johnson, J.; Krieger, V.; Wu, S.; Qiu, H.; et al. Estimating near-infrared reflectance of vegetation from hyperspectral data. Remote Sens. Environ. 2021, 267, 112723. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef]
- Huete, A.R.; Jackson, R.D.; Post, D.F. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 1985, 17, 37–53. [Google Scholar] [CrossRef]
- Panda, S.S.; Ames, D.P.; Suranjan, P. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, X.; Liu, H.; Allen, C.; Li, X.; Wamg, P.; Li, Z.; Yang, Y.; Zhang, S.; Shi, F.; et al. CPSDv0: A forest stand structure database for plantation forests in China. Big Earth Data 2023, 7, 222–240. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Kung, H.; Yu, H. Spectral response characteristics and identification of typical plant species in Ebinur lake wetland national nature reserve (ELWNNR) under a water and salinity gradient. Ecol. Indic. 2017, 81, 222–234. [Google Scholar]
- Eggers, J.J.; Bauml, R.; Tzschoppe, R.; Girod, B. Scalar costa scheme for information embedding. IEEE Trans. Signal Process. 2003, 51, 1003–1019. [Google Scholar] [CrossRef]
- Liu, L.; Song, B.; Zhang, S.; Liu, X. A Novel Principal Component Analysis Method for the Reconstruction of Leaf Reflectance Spectra and Retrieval of Leaf Biochemical Contents. Remote Sens. 2017, 9, 1113. [Google Scholar] [CrossRef]
- Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2011, 42, 463–484. [Google Scholar] [CrossRef]
- Fawagreh, K.; Gaber, M.M.; Elyan, E. Random forests: From early developments to recent advancements. Syst. Sci. Control Eng. Open Access J. 2014, 2, 602–609. [Google Scholar] [CrossRef]
- Marill, K.A. Advanced statistics: Linear regression, part II: Multiple linear regression. Acad. Emerg. Med. 2004, 11, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, F.; Ding, J.; Kung, H.T.; Latif, A.; Johnson, V.C. Estimation of soil salt content (ssc) in the ebinur lake wetland national nature reserve (elwnnr), northwest china, based on a bootstrap-bp neural network model and optimal spectral indices. Sci. Total Environ. 2018, 615, 918. [Google Scholar] [CrossRef]
- Zou, Z.; Shi, Z. Ship detection in spaceborne optical image with SVD networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5832–5845. [Google Scholar] [CrossRef]
- Sanchez, A.H.; Picoli, M.C.A.; Camara, G.; Andrade, P.R.; Chaves, M.E.D.; Lechler, S.; Soares, A.R.; Marujo, R.F.B.; Simões, R.E.O.; Ferreira, K.R.; et al. Comparison of Cloud cover detection algorithms on sentinel–2 images of the amazon tropical forest. Remote Sens. 2020, 12, 1284. [Google Scholar] [CrossRef]
- Tarasov, A.V. Estimation of the accuracy of cloud masking algorithms using Sentinel-2 and PlanetScope data. Mod. Probl. Remote Sens. Earth Space 2020, 17, 26–38. [Google Scholar] [CrossRef]
- Spanner, M.A.; Pierce, L.L.; Peterson, D.L.; Running, S.W. Remote sensing of temperate coniferous forest leaf area index. The influence of canopy closure, understory vegetation and background reflectance. Int. J. Remote Sens. 1990, 11, 95–111. [Google Scholar] [CrossRef]
- Garrigues, S.; Lacaze, R.; Baret, F.; Morisette, J.T.; Weiss, M.; Nickeson, J.E.; Fernandes, R.; Plummer, S.; Shabanov, N.V.; Myneni, R.B.; et al. Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res. Biogeosci. 2008, 113, G02028. [Google Scholar] [CrossRef]
- Houghton, R.A. Aboveground forest biomass and the global carbon balance. Glob. Change Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. Retrieving leaf area index for boreal conifer forests using Landsat TM images. Remote Sens. Environ. 1996, 55, 153–162. [Google Scholar] [CrossRef]
- Chen, J.M.; Leblanc, S. A 4-scale bidirectional reflection model based on canopy architecture. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1316–1337. [Google Scholar] [CrossRef]
- Pisek, J.; Chen, J.M. Mapping Forest Background Reflectivity over North America with Multi-angle Imaging SpectroRadiometer(MISR)Data. Remote Sens. Environ. 2009, 113, 2412–2423. [Google Scholar] [CrossRef]
Vegetation Index | Equation | References |
---|---|---|
Normalized difference vegetation index (NDVI) | [25,26] | |
Near-infrared reflectance of vegetation (NIRv) | [29,30] | |
Simple Ratio Index (SR) | [27,28] | |
Greenness vegetation index (GVI) | [31,32] |
Reflectance | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B8A | B11 | B12 |
---|---|---|---|---|---|---|---|---|---|---|---|
r | 0.19 * | 0.37 ** | 0.35 ** | 0.38 ** | 0.24 ** | 0.24 ** | 0.39 ** | 0.53 ** | 0.53 ** | 0.19 * | 0.21 ** |
Input Parameters | Model | R2 | p |
---|---|---|---|
SR, NDVI, B5 | Age = 12.03 × SR + 13.25 × NDVI + 26.19 × B5 + 2 | 0.69 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Shi, J.; Wang, C.; Gao, C.; Zhang, F. Remote Sensing Inversion and Mapping of Typical Forest Stand Age in the Loess Plateau. Remote Sens. 2023, 15, 5581. https://doi.org/10.3390/rs15235581
Wang X, Shi J, Wang C, Gao C, Zhang F. Remote Sensing Inversion and Mapping of Typical Forest Stand Age in the Loess Plateau. Remote Sensing. 2023; 15(23):5581. https://doi.org/10.3390/rs15235581
Chicago/Turabian StyleWang, Xiaoping, Jingming Shi, Chenfeng Wang, Chao Gao, and Fei Zhang. 2023. "Remote Sensing Inversion and Mapping of Typical Forest Stand Age in the Loess Plateau" Remote Sensing 15, no. 23: 5581. https://doi.org/10.3390/rs15235581
APA StyleWang, X., Shi, J., Wang, C., Gao, C., & Zhang, F. (2023). Remote Sensing Inversion and Mapping of Typical Forest Stand Age in the Loess Plateau. Remote Sensing, 15(23), 5581. https://doi.org/10.3390/rs15235581