Application of a Multifractal Model for Identification of Lithology and Hydrothermal Alteration in the Dasuji Porphyry Mo Deposit in Inner Mongolia, China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Image Data and Data Preprocessing
3.2. Methods
3.2.1. Concentration–Area Model
3.2.2. Band Ratio
3.2.3. Principal Component Analysis
3.2.4. Fractal-Aided Anomaly-Overlaying Model
- Applying the PCA and specific Band Ratio (band 4 * 3)/(band 5 + band 6 + band 7) to the ASTER images from different acquisition dates to extract ferric oxides and hydroxyl alteration.
- Applying the C–A model to each resulting alteration image to separate the alteration anomalies from the complicated geological background in ENVI software.
- Applying the anomaly-overlaying selection method to the resulting anomaly layers to eliminate the random interference-caused false anomalies. In this step, a pixel is classified as a real anomaly if, and only if, it exists as an anomaly in both anomaly layers.
3.2.5. Random Forest Classifier
3.2.6. Fieldwork Verification
3.2.7. The Total Research Flowchart
4. Results
4.1. Principal Component Analysis and Band Ratio
4.2. Fractal-Aided Anomaly-Overlaying Selection Model
4.3. Lithological Discrimination
4.4. Field Validation and Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crósta, A.P.; Moore, J. Enhancement of Landsat Thematic Mapper Imagery for Residual Soil Mapping in Sw Minas Gerais State, Brazil- a Prospecting Case History in Greenstone Belt Terrain. In Proceedings of the Seventh Thematic Conference on Remote Sensing for Exploration Geology: Methods, Integration, Solutions, Calgary, AB, Canada, 2–6 October 1989. [Google Scholar]
- Debba, P.; Van Ruitenbeek, F.; Van Der Meer, F.; Carranza, E.; Stein, A. Optimal Field Sampling for Targeting Minerals Using Hyperspectral Data. Remote Sens. Environ. 2005, 99, 373–386. [Google Scholar] [CrossRef]
- Alimohammadi, M.; Alirezaei, S.; Kontak, D.J. Application of Aster Data for Exploration of Porphyry Copper Deposits: A Case Study of Daraloo–Sarmeshk Area, Southern Part of the Kerman Copper Belt, Iran. Ore Geol. Rev. 2015, 70, 290–304. [Google Scholar] [CrossRef]
- Carrino, T.A.; Crósta, A.P.; Toledo, C.L.B.; Silva, A.M.; Silva, J.L. Geology and Hydrothermal Alteration of the Chapi Chiara Prospect and Nearby Targets, Southern Peru, Using Aster Data and Reflectance Spectroscopy. Econ. Geol. 2015, 110, 73–90. [Google Scholar] [CrossRef]
- Amer, R.; El Mezayen, A.; Hasanein, M. Aster Spectral Analysis for Alteration Minerals Associated with Gold Mineralization. Ore Geol. Rev. 2016, 75, 239–251. [Google Scholar] [CrossRef]
- Ge, W.; Cheng, Q.; Jing, L.; Chen, Y.; Guo, X.; Ding, H.; Liu, Q. Mineral Mapping in the Western Kunlun Mountains Using Tiangong-1 Hyperspectral Imagery. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016. [Google Scholar]
- Salem, S.; El Sharkawi, M.; El-Alfy, Z.; Soliman, N.; Ahmed, S. Exploration of Gold Occurrences in Alteration Zones at Dungash District, Southeastern Desert of Egypt Using Aster Data and Geochemical Analyses. J. Afr. Earth Sci. 2016, 117, 389–400. [Google Scholar] [CrossRef]
- He, L.; Lyu, P.; He, Z.; Zhou, J.; Hui, B.; Ye, Y.; Hu, H.; Zeng, Y.; Xu, L. Identification of Radioactive Mineralized Lithology and Mineral Prospectivity Mapping Based on Remote Sensing in High-Latitude Regions: A Case Study on the Narsaq Region of Greenland. Minerals 2022, 12, 692. [Google Scholar] [CrossRef]
- Saha, S. Remote Sensing and Geographic Information System Applications in Hydrocarbon Exploration: A Review. J. Indian Soc. Remote Sens. 2022, 8, 1457–1475. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Z.; Zhou, J.; Zhu, R.; Xia, J.; Sun, T.; Zhao, X.; Chao, J. ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China. Remote Sens. 2022, 14, 1253. [Google Scholar] [CrossRef]
- Ali, H.; Ghoneim, S. Satellite-based silica mapping as an essential mineral for clean energy transition: Remote sensing mineral exploration as a climate change adaptation approach. J. Afr. Earth Sci. 2022, 196, 104683. [Google Scholar] [CrossRef]
- Hunt, G.R. Near-Infrared (1.3–2.4) Μm Spectra of Alteration Minerals—Potential for Use in Remote Sensing. Geophysics 1979, 44, 1974–1986. [Google Scholar] [CrossRef]
- Hunt, G.R.; Ashley, R.P. Spectra of Altered Rocks in the Visible and near Infrared. Econ. Geol. 1979, 74, 1613–1629. [Google Scholar] [CrossRef]
- Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of Airborne Hyperspectral Data and EO-1 Hyperion for Mineral Mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef]
- Shahriari, H.; Ranjbar, H.; Honarmand, M. Image Segmentation for Hydrothermal Alteration Mapping Using PCA and Concentration–Area Fractal Model. Nat. Resour. Res. 2013, 22, 191–206. [Google Scholar] [CrossRef]
- Sojdehee, M.; Rasa, I.; Nezafati, N.; Abedini, M.V. Application of Spectral Analysis to Discriminate Hydrothermal Alteration Zones at Daralu Copper Deposit, SE Iran. Arab. J. Geosci. 2016, 9, 41. [Google Scholar] [CrossRef]
- Belgrano, T.; Diamond, L.; Novakovic, N.; Hewson, R.; Hecker, C.; Wolf, R.; de Doliwa Zieliński, L.; Kuhn, R.; Gilgen, S. Multispectral discrimination of spectrally similar hydrothermal minerals in mafic crust: A 5000 km2 ASTER alteration map of the Oman–UAE ophiolite. Remote Sens. Environ. 2022, 280, 113211. [Google Scholar] [CrossRef]
- Zuo, L.; Wang, G.; Carranza, E.; Zhai, D.; Pang, Z.; Cao, K.; Mou, N.; Huang, L. Short-Wavelength Infrared Spectral Analysis and 3D Vector Modeling for Deep Exploration in the Weilasituo Magmatic–Hydrothermal Li–Sn Polymetallic Deposit, Inner Mongolia, NE China. Nat. Resour. Res. 2022, 25, 1–33. [Google Scholar] [CrossRef]
- Mahanta, P.; Maiti, S. Remote Detection of Hydrothermal Alteration Zones Using WorldView-3 VNIR-SWIR Reflectance Data: A Study from Lawa Gold Mines, India. J. Indian Soc. Remote Sens. 2022, 50, 1979–1993. [Google Scholar] [CrossRef]
- Fraser, S.; Green, A. A Software Defoliant for Geological Analysis of Band Ratios. Int. J. Remote Sens. 1987, 8, 525–532. [Google Scholar] [CrossRef]
- Harsanyi, J.C. Detection and Classification of Subpixel Spectral Signatures in Hyperspectral Image Sequences; University of Maryland: College Park, MD, USA, 1994. [Google Scholar]
- Farrand, W.H.; Harsanyi, J.C. Mapping the Distribution of Mine Tailings in the Coeur D’alene River Valley, Idaho, through the Use of a Constrained Energy Minimization Technique. Remote Sens. Environ. 1997, 59, 64–76. [Google Scholar] [CrossRef]
- Samani, P.; Prizomwala, S. Rajawat AS. Assessing the mineral alteration in Ambaji–Deri Region (Northwestern India) using hyperspectral remote sensing. J. Indian Soc. Remote Sens. 2021, 49, 249–257. [Google Scholar] [CrossRef]
- Ranjbar, H.; Honarmand, M.; Moezifar, Z. Application of the Crosta Technique for Porphyry Copper Alteration Mapping, Using ETM+ Data in the Southern Part of the Iranian Volcanic Sedimentary Belt. J. Asian Earth Sci. 2004, 24, 237–243. [Google Scholar] [CrossRef]
- Ahmadfaraj, M.; Mirmohammadi, M.; Afzal, P. Application of Fractal Modeling and PCA Method for Hydrothermal Alteration Mapping in the Saveh Area (Central Iran) Based on Aster Multispectral Data. Int. J. Min. Geo-Eng. 2016, 50, 37–48. [Google Scholar]
- Masoumi, F.; Eslamkish, T.; Honarmand, M.; Abkar, A.A. A Comparative Study of Landsat-7 and Landsat-8 Data Using Image Processing Methods for Hydrothermal Alteration Mapping. Resour. Geol. 2017, 67, 72–88. [Google Scholar] [CrossRef]
- Mulja, T.; Heriawan, M. The Miwah high sulphidation epithermal Au–Ag deposit, Aceh, Indonesia: Dynamics of hydrothermal alteration and mineralisation interpreted from principal component analysis of lithogeochemical data. Ore Geol. Rev. 2022, 147, 104988. [Google Scholar] [CrossRef]
- Gad, S.; Kusky, T. Aster Spectral Ratioing for Lithological Mapping in the Arabian–Nubian Shield, the Neoproterozoic Wadi Kid Area, Sinai, Egypt. Gondwana Res. 2007, 11, 326–335. [Google Scholar] [CrossRef]
- Zhang, X.; Li, P. Lithological Mapping from Hyperspectral Data by Improved Use of Spectral Angle Mapper. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 95–109. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Park, Y.; Hong, J.K. Mapping Alteration Mineral Zones and Lithological Units in Antarctic Regions Using Spectral Bands of Aster Remote Sensing Data. Geocarto Int. 2017, 33, 1281–1306. [Google Scholar] [CrossRef]
- Asl, R.A.; Afzal, P.; Adib, A.; Yasrebi, A.B. Application of Multifractal Modeling for the Identification of Alteration Zones and Major Faults Based on ETM+ Multispectral Data. Arab. J. Geosci. 2015, 8, 2997–3006. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, J.; Jiang, D.; Zhuang, D.; Mansaray, L.R.; Hu, Z.; Ji, Z. Mineral Resources Prospecting by Synthetic Application of TM/ETM+, Quickbird and Hyperion Data in the Hatu Area, West Junggar, Xinjiang, China. Sci. Rep. 2016, 6, 21851. [Google Scholar] [CrossRef]
- Cheng, Q. The Perimeter-Area Fractal Model and Its Application to Geology. Math. Geol. 1995, 27, 69–82. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Q.; Cao, L.; Xia, Q.; Chen, Z. Fractal Modelling of the Microstructure Property of Quartz Mylonite During Deformation Process. Math. Geol. 2007, 39, 53–68. [Google Scholar] [CrossRef]
- Zuo, R.; Cheng, Q.; Xia, Q.; Agterberg, F. Application of Fractal Models to Distinguish between Different Mineral Phases. Math. Geosci. 2009, 41, 71–80. [Google Scholar] [CrossRef]
- Zuo, R. Identifying Geochemical Anomalies Associated with Cu and Pb–Zn Skarn Mineralization Using Principal Component Analysis and Spectrum–Area Fractal Modeling in the Gangdese Belt, Tibet (China). J. Geochem. Explor. 2011, 111, 13–22. [Google Scholar] [CrossRef]
- Nazarpour, A.; Sadeghi, B.; Sadeghi, M. Application of Fractal Models to Characterization and Evaluation of Vertical Distribution of Geochemical Data in Zarshuran Gold Deposit, NW Iran. J. Geochem. Explor. 2015, 148, 60–70. [Google Scholar] [CrossRef]
- Cheng, Q.; Agterberg, F.; Ballantyne, S. The Separation of Geochemical Anomalies from Background by Fractal Methods. J. Geochem. Explor. 1994, 51, 109–130. [Google Scholar] [CrossRef]
- Mokhtari, Z.; Sadeghi, B. Geochemical anomaly definition using multifractal modeling, validated by geological field observations: Siah Jangal area, SE Iran. Geochemistry 2021, 4, 125774. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Fractals: Form, Chance and Dimension; WH Freeman & Co.: San Francisco, CA, USA, 1979; pp. 16, 365. [Google Scholar]
- Mandelbrot, B.B.; Pignoni, R. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1983. [Google Scholar]
- Evertsz, C.J. Multifractal Measures. Chaos Fractals New Front. Sci. 1992, 1992, 921–953. [Google Scholar]
- Cheng, Q. Discrete Multifractals. Math. Geol. 1997, 29, 245–266. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Fisher, A.J.; Calvet, L.E.; A Multifractal Model of Asset Returns. No 1164, Cowles Foundation Discussion Papers, Cowles Foundation for Research in Economics, Yale University. 1997. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=78588 (accessed on 23 November 2022).
- Wang, Q.; Wan, L.; Zhang, Y.; Zhao, J.; Liu, H. Number-Average Size Model for Geological Systems and Its Application in Economic Geology. Nonlinear Process. Geophys. 2011, 18, 447. [Google Scholar] [CrossRef]
- Hashemi, M.; Afzal, P. Identification of Geochemical Anomalies by Using of Number–Size (N–S) Fractal Model in Bardaskan Area, NE Iran. Arab. J. Geosci. 2013, 6, 4785–4794. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, Q. A Fractal Concentration–Area Method for Assigning a Color Palette for Image Representation. Comput. Geosci. 2002, 28, 567–575. [Google Scholar] [CrossRef]
- Cheng, Q.; Xu, Y.; Grunsky, E. Integrated Spatial and Spectrum Method for Geochemical Anomaly Separation. Nat. Resour. Res. 2000, 9, 43–52. [Google Scholar] [CrossRef]
- Xu, Y.; Cheng, Q. A Fractal Filtering Technique for Processing Regional Geochemical Maps for Mineral Exploration. Geochem. Explor. Environ. Anal. 2001, 1, 147–156. [Google Scholar] [CrossRef]
- Li, C.; Ma, T.; Shi, J. Application of a Fractal Method Relating Concentrations and Distances for Separation of Geochemical Anomalies from Background. J. Geochem. Explor. 2003, 77, 167–175. [Google Scholar] [CrossRef]
- Rahmati, A.; Afzal, P.; Abrishamifar, S.A.; Sadeghi, B. Application of Concentration–Number and Concentration–Volume Fractal Models to Delineate Mineralized Zones in the Sheytoor Iron Deposit, Central Iran. Arab. J. Geosci. 2015, 8, 2953–2965. [Google Scholar] [CrossRef]
- Afzal, P.; Alghalandis, Y.F.; Khakzad, A.; Moarefvand, P.; Omran, N.R. Delineation of Mineralization Zones in Porphyry Cu Deposits by Fractal Concentration–Volume Modeling. J. Geochem. Explor. 2011, 108, 220–232. [Google Scholar] [CrossRef]
- Chhabra, A.B.; Meneveau, C.; Jensen, R.V.; Sreenivasan, K. Direct Determination of the f(α) Singularity Spectrum and Its Application to Fully Developed Turbulence. Phys. Rev. A 1989, 40, 5284. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geol. Rev. 2007, 32, 314–324. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhao, P. Singularity Theories and Methods for Characterizing Mineralization Processes and Mapping Geo-Anomalies for Mineral Deposit Prediction. Geosci. Front. 2011, 2, 67–79. [Google Scholar] [CrossRef]
- Shahriari, H.; Honarmand, M.; Ranjbar, H. Comparison of Multi-Temporal Aster Images for Hydrothermal Alteration Mapping Using a Fractal-Aided Sam Method. Int. J. Remote Sens. 2015, 36, 1271–1289. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhang, C.; Li, N.; Yang, Y.F.; Deng, K. Geology of the Mo Deposits in Northeast China. J. Jilin Univ. 2012, 42, 46. [Google Scholar]
- Wang, P.; Chen, Y.-J.; Wang, C.-M.; Zhu, X.-F.; Wang, S.-X. Genesis and Tectonic Setting of the Giant Diyanqin’amu Porphyry Mo Deposit in Great Hingan Range, NE China: Constraints from U–Pb and Re–Os Geochronology and Hf Isotopic Geochemistry. Ore Geol. Rev. 2017, 81, 760–779. [Google Scholar] [CrossRef]
- Wu, G.; Li, X.; Xu, L.; Wang, G.; Liu, J.; Zhang, T.; Quan, Z.; Wu, H.; Li, T.; Zeng, Q. Age, Geochemistry, and Sr–Nd–Hf–Pb Isotopes of the Caosiyao Porphyry Mo Deposit in Inner Mongolia, China. Ore Geol. Rev. 2017, 81, 706–727. [Google Scholar] [CrossRef]
- Huang, F.; Chen, Y.; Wang, D.; Yuan, Z.; Chen, Z. A Discussion on the Major Molybdenum Ore Concentration Areas in China and Their Resource Potential. Geol. China 2011, 5, 002. [Google Scholar]
- Wu, H.; Zhang, L.; Pirajno, F.; Shu, Q.; Zhang, M.; Zhu, M.; Xiang, P. The Mesozoic Caosiyao Giant Porphyry Mo Deposit in Inner Mongolia, North China and Paleo-Pacific Subduction-Related Magmatism in the Northern North China Craton. J. Asian Earth Sci. 2016, 127, 281–299. [Google Scholar] [CrossRef]
- Chen, Y. Mesozoic Mo Deposits in Northern North China Craton. In Main Tectonic Events and Metallogeny of the North China Craton; Springer: Berlin/Heidelberg, Germany, 2016; pp. 487–510. [Google Scholar]
- Shen, C.; Zhang, M.; Yu, X.; Chen, W.; Gao, W.; Zhou, W. New Progresses in Exploration of Molybdenum Deposits and Analysis of Mineralization Prospect in Inner Mongolia. Geol. Explor. 2010, 46, 561–575. [Google Scholar]
- Yu, X.; Chen, W.; Li, W. Discovery and Prospecting Significance of Dasuji Porphyry Molybdenum Deposit, Inner Mongolia. Geol. Prospect. 2008, 2, 006. [Google Scholar]
- Nie, F.; Liu, Y.; Zhao, Y.; Cao, Y. Discovery of Dasuji and Caosiyao Large-Size Mo Deposits in Central Inner Mongolia and Its Geological Significances. Miner. Depos. 2012, 31, 930–940. [Google Scholar]
- Fujisada, H.; Iwasaki, A.; Hara, S. Aster Stereo System Performance. In Sensors, Systems, and Next-Generation Satellites V; SPIE: Bellingham, WA, USA, 2001. [Google Scholar]
- Abrams, M.J.; Rothery, D.A.; Pontual, A. Mapping in the Oman Ophiolite Using Enhanced Landsat Thematic Mapper Images. Tectonophysics 1988, 151, 387–401. [Google Scholar] [CrossRef]
- Zuo, R.; Xia, Q.; Zhang, D. A Comparison Study of the C–A and S–A Models with Singularity Analysis to Identify Geochemical Anomalies in Covered Areas. Appl. Geochem. 2013, 33, 165–172. [Google Scholar] [CrossRef]
- Cheng, Q. Multifractality and Spatial Statistics. Comput. Geosci. 1999, 25, 949–961. [Google Scholar] [CrossRef]
- Khan, S.D.; Mahmood, K.; Casey, J.F. Mapping of Muslim Bagh Ophiolite Complex (Pakistan) Using New Remote Sensing, and Field Data. J. Asian Earth Sci. 2007, 30, 333–343. [Google Scholar] [CrossRef]
- Rajendran, S.; Al-Khirbash, S.; Pracejus, B.; Nasir, S.; Al-Abri, A.H.; Kusky, T.M.; Ghulam, A. Aster Detection of Chromite Bearing Mineralized Zones in Semail Ophiolite Massifs of the Northern Oman Mountains: Exploration Strategy. Ore Geol. Rev. 2012, 44, 121–135. [Google Scholar] [CrossRef]
- Pournamdari, M.; Hashim, M.; Pour, A.B. Spectral Transformation of Aster and Landsat TM Bands for Lithological Mapping of Soghan Ophiolite Complex, South Iran. Adv. Space Res. 2014, 54, 694–709. [Google Scholar] [CrossRef]
- Van der Werff, H.; van der Meer, F. Sentinel-2 for Mapping Iron Absorption Feature Parameters. Remote Sens. 2015, 7, 12635–12653. [Google Scholar] [CrossRef]
- Emam, A.; Zoheir, B.; Johnson, P. Aster-Based Mapping of Ophiolitic Rocks: Examples from the Allaqi–Heiani Suture, Se Egypt. Int. Geol. Rev. 2016, 58, 525–539. [Google Scholar] [CrossRef]
- Gupta, R.P. Remote Sensing Geology; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 3662558769. [Google Scholar]
- Loughlin, W. Principal Component Analysis for Alteration Mapping. Photogramm. Eng. Remote Sens. 1991, 57, 1163–1169. [Google Scholar]
- Crosta, A.; De Souza Filho, C.; Azevedo, F.; Brodie, C. Targeting Key Alteration Minerals in Epithermal Deposits in Patagonia, Argentina, Using Aster Imagery and Principal Component Analysis. Int. J. Remote Sens. 2003, 24, 4233–4240. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, J.; Han, L.; Xu, X. Mineral Mapping and Ore Prospecting Using Landsat TM and Hyperion Data, Wushitala, Xinjiang, Northwestern China. Ore Geol. Rev. 2017, 81, 280–295. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. Regional Mapping of Phyllic-and Argillic-Altered Rocks in the Zagros Magmatic Arc, Iran, Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (Aster) Data and Logical Operator Algorithms. Geosphere 2006, 2, 161–186. [Google Scholar] [CrossRef]
- Matin, S.; Hower, J.C.; Farahzadi, L.; Chelgani, S.C. Explaining Relationships among Various Coal Analyses with Coal Grindability Index by Random Forest. Int. J. Miner. Process. 2016, 155, 140–146. [Google Scholar] [CrossRef]
- Li, L.; Solana, C.; Canters, F.; Kervyn, M. Testing Random Forest Classification for Identifying Lava Flows and Mapping Age Groups on a Single Landsat 8 Image. J. Volcanol. Geotherm. Res. 2017, 345, 109–124. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. Modeling Spatial Patterns of Fire Occurrence in Mediterranean Europe Using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Asadzadeh, S.; Chabrillat, S.; Cudahy, T.; Rashidi, B.; de Souza Filho, C.R. Alteration Mineral Mapping of the Shadan Porphyry Cu-Au Deposit (Iran) Using Airborne Imaging Spectroscopic Data: Implications for Exploration Drilling. Econ. Geol. 2023; in press. [Google Scholar] [CrossRef]
- Yao, F.; Liu, S.; Wang, D.; Geng, X.; Wang, C.; Jiang, N.; Wang, Y. Review on the development of multi- and hyperspectral Remote sensing technology for exploration of copper-gold deposits. Ore Geol. Rev. 2023, 162, 105732. [Google Scholar] [CrossRef]
- Yu, H.; Li, P. Lithologic mapping using LANDSAT ETM + and ASTER data. Acta Petrol. Sin. 2010, 26, 345–351. [Google Scholar]
- Pour, A.B.; Hashim, M. Identification of Hydrothermal Alteration Minerals for Exploring of Porphyry Copper Deposit Using Aster Data, Se Iran. J. Asian Earth Sci. 2011, 42, 1309–1323. [Google Scholar] [CrossRef]
- Van der Meer, F.; Van der Werff, H.; Van Ruitenbeek, F. Potential of Esa’s Sentinel-2 for Geological Applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Zhang, T.; Yi, G.; Li, H.; Wang, Z.; Tang, J.; Zhong, K.; Li, Y.; Wang, Q.; Bie, X. Integrating Data of Aster and Landsat-8 OLI (Ao) for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China. Remote Sens. 2016, 8, 890. [Google Scholar] [CrossRef]
- Gad, S.; Kusky, T. Lithological Mapping in the Eastern Desert of Egypt, the Barramiya Area, Using Landsat Thematic Mapper (TM). J. Afr. Earth Sci. 2006, 44, 196–202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, M.; Zhang, W.; Tang, J.; Gao, H.; Shalamzari, M.J. Application of a Multifractal Model for Identification of Lithology and Hydrothermal Alteration in the Dasuji Porphyry Mo Deposit in Inner Mongolia, China. Remote Sens. 2023, 15, 5532. https://doi.org/10.3390/rs15235532
Xi M, Zhang W, Tang J, Gao H, Shalamzari MJ. Application of a Multifractal Model for Identification of Lithology and Hydrothermal Alteration in the Dasuji Porphyry Mo Deposit in Inner Mongolia, China. Remote Sensing. 2023; 15(23):5532. https://doi.org/10.3390/rs15235532
Chicago/Turabian StyleXi, Mingjie, Wanchang Zhang, Jiakui Tang, Huiran Gao, and Masoud Jafari Shalamzari. 2023. "Application of a Multifractal Model for Identification of Lithology and Hydrothermal Alteration in the Dasuji Porphyry Mo Deposit in Inner Mongolia, China" Remote Sensing 15, no. 23: 5532. https://doi.org/10.3390/rs15235532
APA StyleXi, M., Zhang, W., Tang, J., Gao, H., & Shalamzari, M. J. (2023). Application of a Multifractal Model for Identification of Lithology and Hydrothermal Alteration in the Dasuji Porphyry Mo Deposit in Inner Mongolia, China. Remote Sensing, 15(23), 5532. https://doi.org/10.3390/rs15235532