Algal Biological Features Viewed in Satellite Observations: A Case Study of the Bohai Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Field Measurements
2.3. Satellite and Auxiliary Data
2.4. Establishing the NNL Model
2.5. Estimating the NAG Rate
2.6. Estimating the Algal Cell Size
2.7. [Chl] Retrieval Model
2.8. Statistical Evaluation of the Ocean Color Product
3. Results
3.1. Spectrum and Compositions
3.2. Evaluating [Chl] Retrieval Using Field Measurements
3.3. IOP-Based Empirical LACA Model
3.4. Training and Evaluating the Model
3.5. Accuracy of Satellite-Derived LACA
4. Applications and Discussion
4.1. The Seasonal Variations of ACA
4.2. Decoupling between ACA and [Chl]
4.3. Inter-Annual Changes of ACA, [Chl], and Ci
4.4. Vertical Mixture-Mediated Dance of the Algal Population in the Bohai Sea
5. Summary
- (1)
- The optical properties of algal cells were very complicated, so it was hard to describe the algal cell abundance using IOPs. This was because phytoplankton concentration in the water column depends on the algal cell amount, on the phytoplankton size structure, and other variables.
- (2)
- The neural network model was an effective approach for estimating the LACA from remote sensing reflectance in the Bohai Sea, and produced <9% uncertainty in estimating the LACA from the satellite-derived and/or field-measured Rrs.
- (3)
- Due to increasing algal cell size from 2002 to 2015, the [Chl] inside a cell slowly increased by, on average, 4.0 × 10−4 μg L−1 per month, with some regular fluctuations during that 14-year time span; however, the seasonal variations might be not very accurate due to disturbance associated with the temporal variations of environments. The increase in algal cell size could have primarily been caused by the increasing trophic state in the Bohai Sea, but the mechanisms behind these physical processes are still beyond our knowledge.
- (4)
- The LACA and cell size exhibited seasonal changing patterns due to the seasonal variations in the physical factors of the Bohai Sea. The LACA increased monotonically with Zmld/Zeu, and the trend in the LACA ended in a monotonic drop because Zmld/Zeu < 10.124 m. This phenomenon was primarily caused by the “surface-down” radiance and “bottom-up” nutrient physical mechanisms found in the Bohai Sea.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behrenfeld, M.J. Abandoning Sverdrup’s Critical Depth Hypothesis on phytoplankton blooms. Ecology 2010, 91, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Razali, R.M.; Mustapa, N.I.; Yaacob, K.K.K.; Yusof, F.; Teng, S.T.; Hanafiah, A.H.; Hii, K.S.; Mohd-Din, M.; Gu, H.; Leaw, C.P.; et al. Diversity of algal cell and the algal bloom event in the mariculture areas of Johor Strait, Malaysia. Plankton Benthos Res. 2022, 17, 290–300. [Google Scholar] [CrossRef]
- Behrenfeld, M. Climate-mediated dance of the phytoplankton. Nat. Clim. Change 2014, 4, 880–887. [Google Scholar] [CrossRef]
- Banse, K. Rates of phytoplankton cell division in the field and in iron enrichment experiments. Limnol. Oceanogr. 1991, 36, 1886–1898. [Google Scholar] [CrossRef]
- Cullen, J.J.; Davis, R.F. The blank can make a big difference in oceanographic measurements. Limnol. Oceanogr. Bull. 2003, 12, 29–35. [Google Scholar] [CrossRef]
- Edwards, M.; Beaugrand, G.; Reid, P.C.; Rowden, A.A.; Jones, M.B. Ocean climate anomalies and the ecology of the North Sea. Mar. Ecol. Prog. Ser. 2002, 239, 1–10. [Google Scholar] [CrossRef]
- Gordon, H.R.; Clark, D.K.; Mueller, J.L.; Hovis, W.A. Phytoplankton pigments derived from the Nimbus-7 CZCS: Initial comparisons with surface measurements. Science 1980, 210, 63–66. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar]
- Ostos, E.M.; Blanco, J.M.; Agustí, S.; Lubian, L.M.; Rodrigue, Z.; Palomino, R.L.; Liabres, M.; Rodriguez, J. Phytoplankton biovolume is independent from the slope of the size spectrum in the oligotrophic Atlantic ocean. J. Mar. Syst. 2015, 152, 42–50. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Dall’Olmo, G.; Sathyendranath, S.; Hardman-Mountford, N.J. Particle backscattering as a function of chlorophyll and phytoplankton size structure in the open-ocean. Opt. Express 2012, 20, 17632–17652. [Google Scholar] [CrossRef]
- Kostadinov, T.S.; Siegel, D.A.; Maritorena, S. Retrieval of the particle size distribution from satellite ocean color observations. J. Geophys. Res. Ocean. 2009, 114, C09015. [Google Scholar] [CrossRef]
- Antoine, D.; Siegel, D.A.; Kostadinov, T.; Maritorena, S.; Nelson, N.B.; Gentili, B.; Vellucci, V.; Guillocheau, N. Variability in Optical Particle Backscattering in Contrasting Bio-optical Oceanic Regimes. Limnol. Oceanogr. 2011, 56, 955–973. [Google Scholar] [CrossRef]
- Briggs, N.T.; Slade, W.H.; Boss, E.; Perry, M.J. Method for estimating mean particle size from high-frequency fluctuations in beam attenuation or scattering measurements. Appl. Opt. 2013, 52, 6710–6725. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.C.; Hill, A.C.; Barber, P.W. Light scattering by size/shape distributions of soil particles and spheroids. Appl. Opt. 1984, 23, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.A.; Stramski, D.; Wright, V.M. Particle size distributions of coastal waters measured with an in situ laser diffractometer. In Proceedings of the Ocean Optics XIX, Barga, Italy, 3–4 October 2008. [Google Scholar]
- Uitz, J.; Stramski, D.; Baudoux, A.-C.; Reynolds, R.A.; Wright, V.M.; Dubranna, J.; Azam, F. Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria. Limnol. Oceanogr. 2010, 55, 2317–2330. [Google Scholar] [CrossRef]
- Chen, J.; He, X.; Xing, X.; Xing, Q.; Liu, Z.; Pan, D. An inherent optical properties data processing system for achieving consistent ocean color products from different ocean color satellites. J. Geophys. Res. Ocean. 2020, 125, e2019JC015811. [Google Scholar] [CrossRef]
- Jamet, C.; Loisel, H.; Dessailly, D. Retrieval of the spectral diffuse attenuation coefficient K-d(lambda) in open and coastal ocean waters using a neural network inversion. J. Geophys. Res. Ocean. 2012, 117, C10023. [Google Scholar] [CrossRef]
- Roy, S.; Sathyendranath, S.; Platt, T. Retrieval of phytoplankton size from bio-optical measurements: Theory and applications. J. R. Soc. Interface 2011, 8, 650–660. [Google Scholar] [CrossRef]
- Liu, H.; Yin, B.S. Numerical investigation of nutrient limitations in the Bohai Sea. Mar. Environ. Res. 2010, 70, 308–317. [Google Scholar] [CrossRef]
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Mueller, J.L.; Fargion, G.S.; McClain, C.R. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4; Goddard Space Flight Center: Greenbelt, MD, USA, 2002.
- Stevenson, R.J.; Bahls, L.L. Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish; EPA 841-B-99-002; United States Environmental Protection Agency: Washington, DC, USA, 1999.
- Chen, J.; Ishizaka, J.; Zhu, L.Y.; Cui, T.W. A neural network model for Kd(λ) retrieval and application to global Kpar monitoring. PLoS ONE 2015, 10, e0127514. [Google Scholar]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: New York, NY, USA, 1994; p. 592. [Google Scholar]
- Montégut, C.B.; Madec, G.; Fisher, A.S.; Lazar, A.; Ludicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. 2004, 109, C12003. [Google Scholar] [CrossRef]
- Gordon, H.R.; Voss, K.J. Normalized Water-Leaving Radiance. In MODIS Algorithm Theoretical Basis Document (ATBD-17); Department of Physics, University of Miami: Coral Gables, FL, USA, 1999; p. 33124. [Google Scholar]
- Marañón, E.; Cermeno, P.; Rodriguez, J.; Zubkov, M.V.; Harris, R.P. Scaling of phytoplankton photosynthesis and cell size in the ocean. Limnol. Oceanogr. 2007, 52, 2190–2198. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A Simple Semi-analytical Model for Remote Estimation of Chlorophyll-a in Turbid Waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Carder, K.L.; Chen, F.R.; Cannizzaro, J.P.; Campbell, J.W.; Mitchell, B.G. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a. Adv. Space Res. 2004, 33, 1152–1159. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Ocean. 2012, 117, C01011. [Google Scholar]
- Wang, M.; Son, S.; Shi, W. Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data. Remote Sens. Environ. 2009, 113, 635–644. [Google Scholar] [CrossRef]
- Chen, J.; He, X.; Quan, W.; Ma, L.; Jia, M.; Pan, D. A statistical analysis of residual errors in satellite remote sensing reflectance data from oligotrophic open oceans. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4203912. [Google Scholar] [CrossRef]
- Grzebyk, D.; Denardou, A.; Berland, B.; Pouchus, Y.F. Evidence of a new toxin in the red-tide dinoflagellate Prorocentrum minimum. J. Plankton Res. 1997, 19, 1111–1124. [Google Scholar] [CrossRef]
- Ryerson, T.A.; Newton, J.A.; Armbrust, E.V. Spring Bloom Development, Genetic Variation, and Population Succession in the Planktonic Diatom Ditylum brightwellii. Limnol. Oceanogr. 2006, 51, 1249–1261. [Google Scholar]
- Werdell, P.J.; McKinna, L.I.W.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S.; et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 2018, 160, 186–212. [Google Scholar] [PubMed]
- Moore, C.M.; Suggett, D.J.; Hickman, A.E.; Kim, Y.-n.; Tweddle, J.F.; Sharples, J.; Geider, R.J.; Holligan, P.M. Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea. Limnol. Oceanogr. 2006, 51, 936–949. [Google Scholar]
- Agirbas, E.; Martinez-Vicente, V.; Brewin, R.J.W.; Racault, M.-F.; Airs, R.L.; Llewellyn, C.A. Temporal changes in total and size-fractioned chlorophyll-a in surface waters of three provinces in the Atlantic Ocean (September to November) between 2003 and 2010. J. Mar. Syst. 2015, 150, 56–65. [Google Scholar]
- Cui, T.; Zhang, J.; Groom, S.; Sun, L.; Smyth, T.; Sathyendranath, S. Validation of MERIS ocean-color products in the Bohai Sea: A case study for turbid coastal waters. Remote Sens. Environ. 2010, 114, 2326–2336. [Google Scholar]
- Chen, J.; Quan, W.T.; Cui, T.W.; Song, Q.J.; Lin, C.S. Remote sensing of absorption and scattering coefficient using neural network model: Development, validation, and application. Remote Sens. Environ. 2014, 149, 213–226. [Google Scholar]
- Liu, Z.L.; Chen, J.; Cui, T.W.; Tang, J.W.; Wang, L. A combined semi-analytical algorithm for retrieving total suspended sediment concentration from multiple missions: A case study of the China Eastern Coastal Zone. Int. J. Remote Sens. 2021, 40, 8004–8033. [Google Scholar]
- Zhu, L.; Chen, Y.; Guo, L.; Wang, F.J. Estimate of dry deposition fluxes of nutrients over the East China Sea: The implication of aerosol ammonium to non-sea-salt surfate ratio to nutrient deposition of coastal oceans. Atmos. Environ. 2013, 69, 131–138. [Google Scholar]
- Hu, C.H.; Ji, Z.W.; Wang, T. Dynamic characteristics of sea currents and sediment dispersion in the Yellow River Estuary. Int. J. Sediment Res. 1998, 13, 20–30. [Google Scholar]
- Hao, Z.; Sun, D.; Zheng, J. East Asian monsoon signals reflected in temperature and precipitation changes over the past 300 years in the middle and lower reaches of the Yangtze River. PLoS ONE 2015, 10, e0131159. [Google Scholar]
- Guenther, M.; Araújo, M.; Flores-Montes, M.; Gonzalez-Rodriguez, E.; Neumann-Leitão, S. Eutrophication effects on phytoplankton size-fractioned biomass and production at a tropical estuary. Mar. Pollut. Bull. 2015, 91, 537–547. [Google Scholar]
- Sundermann, J.; Feng, S.Z. Analysis and modelling of the Bohai sea ecosystem—A joint German–Chinese study. J. Mar. Syst. 2004, 44, 127–140. [Google Scholar] [CrossRef]
- Huang, N.E. Computer Implemented Empirical Mode Decomposition Method, Apparatus, and Article of Manufacture for Two-Dimensional Signals. U.S. Patent US5983162, 9 November 1999. [Google Scholar]
- Geider, R.; MacIntyre, H.L. A dynamic model of photoadaption in phytoplankton. Limnol. Oceanogr. 1996, 41, 1–15. [Google Scholar] [CrossRef]
- Liu, L.; Fan, M.; Kang, Y. Effect of nutrient supply on cell size evolution of marine phytoplankton. Math. Biosci. Eng. 2023, 20, 4714–4740. [Google Scholar] [CrossRef] [PubMed]
- Lozano, J.; Aranguren-Gassís, M.; García-Martín, E.E.; González, J.; Herrera, J.L.; Hidalgo-Robatto, B.; Mártinez-Castrillón, D.; Pérez-Lorenzo, M.; Varela, R.A.; Serret, P. Seasonality of phytoplankton cell size and the relation between photosynthesis and respiration in the Ría de Vigo (NW Spain). Mar. Ecol. Prog. Ser. 2021, 664, 43–58. [Google Scholar] [CrossRef]
- Reich, P.B.; Tjoelker, M.G.; Machado, J.-L.; Oleksyn, J. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 2006, 439, 457–461. [Google Scholar] [CrossRef]
- Sverdrup, H. On conditions for the vernal blooming of phytoplankton. J. Cons. Cons. Perm. Int. Pour L’exploration Mer 1953, 18, 287–295. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Ji, R.B.; Browman, H.I. Revisiting Sverdrup’s critical depth hypothesis. ICES J. Mar. Sci. 2015, 72, 1892–1896. [Google Scholar] [CrossRef]
Dataset | Min | Max | Mean | Median | STD | |
---|---|---|---|---|---|---|
Training dataset | LACA | 4.523 | 7.928 | 5.817 | 6.102 | 0.953 |
a(443) | 0.257 | 2.568 | 0.697 | 0.519 | 0.473 | |
[Chl] | 0.681 | 9.832 | 3.221 | 3.200 | 1.691 | |
TSM | 1.600 | 62.40 | 13.165 | 6.900 | 15.895 | |
Testing dataset | LACA | 4.732 | 7.826 | 5.468 | 5.974 | 1.019 |
a(443) | 0.290 | 1.005 | 0.513 | 0.447 | 0.191 | |
[Chl] | 0.945 | 9.832 | 2.937 | 2.629 | 1.741 | |
TSM | 0.960 | 106.40 | 12.428 | 8.800 | 14.772 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, W.; Chen, J. Algal Biological Features Viewed in Satellite Observations: A Case Study of the Bohai Sea. Remote Sens. 2023, 15, 4999. https://doi.org/10.3390/rs15204999
Quan W, Chen J. Algal Biological Features Viewed in Satellite Observations: A Case Study of the Bohai Sea. Remote Sensing. 2023; 15(20):4999. https://doi.org/10.3390/rs15204999
Chicago/Turabian StyleQuan, Wenting, and Jun Chen. 2023. "Algal Biological Features Viewed in Satellite Observations: A Case Study of the Bohai Sea" Remote Sensing 15, no. 20: 4999. https://doi.org/10.3390/rs15204999
APA StyleQuan, W., & Chen, J. (2023). Algal Biological Features Viewed in Satellite Observations: A Case Study of the Bohai Sea. Remote Sensing, 15(20), 4999. https://doi.org/10.3390/rs15204999