Classification of Conservation Tillage Using Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources for Remote Sensing
2.3. Field Measurements
2.4. Methods
2.4.1. ESTARFM Algorithm
2.4.2. IB and BI Integration Methodology
2.4.3. MRC Estimation Model
2.4.4. MRC Value Extraction from Photos via the Maximum Likelihood Method
3. Results
3.1. ESTARFM
3.2. MRC Estimation Model Accuracy Validation
4. Discussion
4.1. Analysis of Fusion Methods
4.2. MRC Spatial Distribution Analysis
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, F.; Yu, X.; Gao, J. The bottleneck and breakthrough path of the conservation tillage development in black soil of northeast China. J. Issues Agric. Econ. 2020, 2, 135–142. [Google Scholar]
- Li, A.; Fan, X.; Wu, C. Situation and development trends of conservation tillage in the world. Trans. Chin. Soc. Agric. Mach. 2006, 37, 177–180. [Google Scholar]
- Liu, W.; Li, W.; Zheng, K.; Zhao, H. The current research status of conservation tillage technology. J. Agric. Mech. Res. 2017, 39, 256–261+268. [Google Scholar]
- Vaneph, S.; Benites, J. First World Congress on Conservation Agriculture A World−Wide Challenge. R. Madrid, Spain, 1–5 October 2001. Available online: http://www.act-africa.org/file/newsletters/books_manuals/first-wcca%20.pdf (accessed on 21 November 2022).
- Kassam, A.; Friedrich, T.; Derpsch, R. Worldwide adoption of conservation agriculture. In Proceedings of the 6th World Congress on Conservation Agriculture, Winnipeg, MB, Canada, 21–25 June 2014; pp. 22–25. [Google Scholar]
- Derpsch, R. Historical review of no−tillage cultivation of crops. In Proceedings of the Conservation Tillage for Sustainable Agriculture. Proceedings from an International Workshop, Harare, Zimbabwe, 22–27 June 1998; pp. 22–27. [Google Scholar]
- Derpsch, R.; Friedrich, T. Global overview of conservation agriculture adoption. In Proceedings of the World Congress on Conservation Agriculture, New Delhi, India, 4–7 February 2009. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsch, R. Overview of the worldwide spread of conservation agriculture. Field Actions Sci. Rep. J. Field Actions 2015, 8, 12–15. [Google Scholar]
- Ao, M.; Zhang, X.; Guan, Y. Research and practice of conservation tillage in black soil region of northeast China. Bull. Chin. Acad. Sci. 2021, 36, 1203–1215. [Google Scholar]
- CTIC. Tillage Type Definitions; Conservation Technology Information Center: West Lafayette, IN, USA, 2016. [Google Scholar]
- Najafi, P.; Navid, H.; Feizizadeh, B. Object−based satellite image analysis applied for crop residue estimating using Landsat OLI imagery. Int. J. Remote Sens. 2018, 39, 6117–6136. [Google Scholar] [CrossRef]
- Carter, M. Conservation Tillage. In Encyclopedia of Soils in the Environment; Academic Press: Cambridge, MA, USA, 2005; pp. 306–311. [Google Scholar]
- Morrison, J. Strip tillage for “no–till” row crop production. Appl. Eng. Agric. 2002, 18, 277. [Google Scholar] [CrossRef]
- Zhou, J.; Khot, L.; Boydston, R.; Miklas, P.N.; Porter, L. Low altitude remote sensing technologies for crop stress monitoring: A case study on spatial and temporal monitoring of irrigated pinto bean. Precis. Agric. 2018, 19, 555–569. [Google Scholar] [CrossRef]
- Sullivan, D.; Lee, D.; Beasley, J.; Brown, S.; Williams, E.J. Evaluating a crop residue cover index for determining tillage regime in a cotton−corn−peanut rotation. J. Soil Water Conserv. 2008, 63, 28–36. [Google Scholar] [CrossRef]
- Zheng, D.; Jiang, H.; Li, B.; Li, H.; Zhang, J. Study on the no−tillage mulch planter for wheat under the bestrow of the whole mealie straw. J. Agric. Univ. Hebei 2003, S1, 285–287. [Google Scholar]
- Gong, J.; Huang, G.; Chen, L.; Fu, B. Comprehensive ecological effect of straw mulch on spring wheat field in dry land area. Agric. Res. Arid. Areas 2003, 03, 69–73. [Google Scholar]
- Yang, S.; Yang, K. Cybernetics Foundation for Mechanical Engineering; Huazhong University of Science and Technology Publishing: Wuhan, China, 2002; pp. 154–196. [Google Scholar]
- Zhang, Z. Proficient in Matlab 6.5.; Beihang University Press: Beijing, China, 2003; pp. 126–143. [Google Scholar]
- Yu, G.; Hao, R.; Ma, H.; Wu, S.; Chen, M. Research on Image Recognition Method Based on SVM Algorithm and ESN Algorithm for Crushed Straw Mulching Rate. J. Henan Agric. Sci. 2018, 47, 155–160. [Google Scholar]
- McCarty, J.; Loboda, T.; Trigg, S. A hybrid remote sensing approach to quantifying crop residue burning in the United States. Appl. Eng. Agric. 2008, 24, 515–527. [Google Scholar] [CrossRef]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.H. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Jin, X.; Ma, J.; Wen, Z.; Song, K. Estimation of maize residue cover using Landsat−8 OLI image spectral information and textural features. Remote Sens. 2015, 7, 14559–14575. [Google Scholar] [CrossRef] [Green Version]
- Xiang, X.; Du, J.; Jacinthe, P.A. Integration of tillage indices and textural features of Sentinel−2A multispectral images for maize residue cover estimation. Soil Tillage Res. 2022, 221, 105405. [Google Scholar] [CrossRef]
- Cai, W.; Zhao, S.; Wang, Y. Estimation of winter wheat residue cover using spectral and textural information from Sentinel−2 data. Remote Sens. 2020, 24, 1108–1119. [Google Scholar]
- Bannari, A.; Pacheco, A.; Staenz, K. Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data. Remote Sens. Environ. 2006, 104, 447–459. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, H.; Wang, Z. A comparison of estimating crop residue cover from sentinel−2 data using empirical regressions and machine learning methods. Remote Sens. 2020, 12, 1470. [Google Scholar] [CrossRef]
- Zheng, B.; Campbell, J.B.; Shao, Y. Broad−scale monitoring of tillage practices using sequential landsat imagery. Soil Sci. Soc. Am. J. 2013, 77, 1755–1764. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhang, H.; Liu, F. Extraction method of irrigated arable land in the Chahannur Basin based on the ESTARFM NDVI. Chin. J. Ecoagric. 2021, 29, 1105–1116. [Google Scholar]
- Huang, B.; Zhang, H.; Song, H. Unified fusion of remote−sensing imagery: Generating simultaneously high−resolution synthetic spatial–temporal–spectral earth observations. Remote Sens. 2013, 4, 561–569. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Knauer, K.; Gessner, U.; Fensholt, R. An ESTARFM fusion framework for the generation of large−scale time series in cloud−prone and heterogeneous landscapes. Remote Sens. 2016, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Chen, J.; Gao, F. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. J. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Emelyanova, I.; McVicar, T.; Van Niel, A.I. Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. J. Remote Sens. Environ. 2013, 133, 193–209. [Google Scholar] [CrossRef]
- Chen, B.; Huang, B.; Xu, B. Comparison of spatiotemporal fusion models: A review. Remote Sens. 2015, 7, 1798–1835. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Wang, J.; Pritchard, I. A spatio−temporal data fusion model for generating NDVI time series in heterogeneous regions. Remote Sens. 2017, 9, 1125. [Google Scholar] [CrossRef] [Green Version]
- Watts, J.; Powell, S.; Lawrence, R. Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery. J. Remote Sens. Environ. 2011, 115, 66–75. [Google Scholar] [CrossRef]
- Jarihani, A.; McVicar, T.; Van, N. Blending Landsat and MODIS data to generate multispectral indices: A comparison of “Index−then−Blend” and “Blend−then−Index” approaches. Remote Sens. 2014, 6, 9213–9238. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Kang, Y. Research on arable land protection from the perspective of new agricultural operators. Agric. Technol. 2021, 41, 152–155. [Google Scholar]
- Li, Z.; Cao, W.; Liu, B.; Luo, Z. Current status and developing trend of soil erosion in China. Sci. Soil Water Conserv. 2008, 01, 57–62. [Google Scholar]
- Yang, X.; Guo, J.; Liu, H.; Liu, B. Soil wind erosion environment in black soil region in Northeastern China. Sci. Geogr. Sin. 2006, 4, 4443–4448. [Google Scholar]
- Wang, C.; Tu, Z.; Zheng, T. Study on promotion and application of conservation tillage technology in Jilin. Chin. Agric. Mech. 2019, 40, 200–203. [Google Scholar]
- Li, H.; Li, H.; He, J. Measuring system for residue cover rate in field based on bp neural network. Trans. Chin. Soc. Agric. Mach. 2009, 40, 58–62. [Google Scholar]
- Zhu, X.; Cai, F.; Tian, J. Spatiotemporal fusion of multisource remote sensing data: Literature survey, taxonomy, principles, applications, and future directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Xiang, X.; Du, J.; Zhao, B.; Zhou, H.; Song, K. Remotely sensed estimation of maize residue cover in typical agricultural regions of Songnen Plain. Soil Crops 2021, 10, 282–293. [Google Scholar]
- Daughtry, C.S.T. Discriminating crop residues from soil by shortwave infrared reflectance. Agron. J. 2001, 93, 125–131. [Google Scholar] [CrossRef]
- Daughtry, C.; Hunt, E., Jr.; McMurtrey, J., III. Assessing crop residue cover using shortwave infrared reflectance. Remote Sens. Environ. 2004, 90, 126–134. [Google Scholar] [CrossRef]
- ERDAS (Firm). ERDAS Field Guide; ERDAS: Huntsville, AL, USA, 1997. [Google Scholar]
- Guo, Y. Calibration and validation of the microwave humidity and temperature detector of the Fengyun−3C satellite. Chin. J. Geotech. 2015, 58, 12. [Google Scholar]
- Guan, Q.; Ding, M.; Zhang, H. Analysis of applicability about ESTARFM in the middle−lower Yangtze Plain. J. Geoinform. Sci. 2021, 23, 1118–1130. [Google Scholar]
- Li, X.; Liu, S. Principles and Applications of Remote Sensing; Science Press: Beijing, China, 2008. [Google Scholar]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS−MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Zheng, T.; Zhai, K.; Zou, S. A survey of corn conservation tillage in Jilin Province of China. Agric. Mach. Technol. Extend 2016, 4, 7–9. [Google Scholar]
- Yan, H. Create “Lishu model” upgraded version. Jilin Dly. 2022, 2, 3–5. [Google Scholar]
- Geng, D. Investigation and Analysis of the Promotion and Application of Straw Returning in Jilin Province; Jilin Agricultural University: Changchun, China, 2016. [Google Scholar]
- Liu, X. Study on the Problems and Countermeasures of Water Resources in Lishu County. J. Intell. 2011, 25, 304. [Google Scholar]
- Cui, N.; Fan, Y.; Dong, J. Application status and developing routes of maize straw mulching of conservation tillage technology in Northeast China. J. Mai Sci. 2021, 29, 112–117+126. [Google Scholar]
- Sheng, W.; Bai, Y. Analysis of water resources status in Lishu County. Bus. China 2010, 7, 395. [Google Scholar]
Band | Central Wavelength (nm) | Spatial Resolution(m) | |||
---|---|---|---|---|---|
Sentinel−2 | MODIS | Sentinel−2 | MODIS | Sentinel−2 | MODIS |
Band11 (SWIR) | Band6 | 1.610 | 1.230–1.250 | 20 | 500 |
Band12 (SWIR) | Band7 | 2.190 | 1.628–1.652 | 20 | 500 |
Sentinel−2 | MODIS | ||
---|---|---|---|
Image Time | Data usage | Image Time | Data usage |
28 May 2020 | Baseline images | 28 May 2020 | Baseline images |
12 June 2020 | Validation of results | 12 June 2020 | Fusion input |
17 June 2020 | Baseline images | 17 June 2020 | Baseline images |
18 April 2021 | Baseline images | 18 April 2021 | Baseline images |
17 May 2021 | Fusion input | ||
18 May 2021 | Baseline images | 18 May 2021 | Baseline images |
Item | Photo category | ||||
---|---|---|---|---|---|
Seedling | Shadow | Straw | Land | Cord (Measuring rope) | |
Producer accuracy (%) | 100 | 100 | 93.92 | 94.28 | 81.12 |
User accuracy (%) | 97.1 | 99.07 | 87.05 | 96.51 | 93.49 |
Commission error (%) | 2.90 | 0.93 | 12.95 | 3.49 | 6.51 |
Omission error (%) | 0 | 0 | 6.08 | 5.72 | 18.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, D.; Du, J.; Song, K.; Zhao, B.; Zhang, Y.; Zhang, W. Classification of Conservation Tillage Using Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model. Remote Sens. 2023, 15, 508. https://doi.org/10.3390/rs15020508
Jiang D, Du J, Song K, Zhao B, Zhang Y, Zhang W. Classification of Conservation Tillage Using Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model. Remote Sensing. 2023; 15(2):508. https://doi.org/10.3390/rs15020508
Chicago/Turabian StyleJiang, Dapeng, Jia Du, Kaishan Song, Boyu Zhao, Yiwei Zhang, and Weijian Zhang. 2023. "Classification of Conservation Tillage Using Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model" Remote Sensing 15, no. 2: 508. https://doi.org/10.3390/rs15020508
APA StyleJiang, D., Du, J., Song, K., Zhao, B., Zhang, Y., & Zhang, W. (2023). Classification of Conservation Tillage Using Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model. Remote Sensing, 15(2), 508. https://doi.org/10.3390/rs15020508