Unsupervised SAR Image Change Detection Based on Histogram Fitting Error Minimization and Convolutional Neural Network
Abstract
:1. Introduction
- 1.
- We first consider local change detection. Local change detection is a challenge for unsupervised change detection. We find that the proposed method has great advantages in local change detection.
- 2.
- This paper proposes a novel unsupervised change detection framework called HFEM-CNN. This framework combines sample selection, training and testing into one step: multi-objective learning. The parameters of the network are learned adaptively. Compared with our previous work, the method proposed in this paper is more automatic. It does not require fragment removal as the post-processing to achieve decent results.
- 3.
- The experiments are conducted on both whole images and cropped images. The encouraging results demonstrate that the proposed method is effective for the local change detection task.
2. Local Change Detection
3. Methods
3.1. Difference Image Calculation
3.2. The Review of HFEM
3.3. CNN and Loss Function Design
3.3.1. CNN Design
3.3.2. Loss Function Design
3.3.3. High Pass Filter
4. Experiment
4.1. Dataset Descriptions
4.2. Evaluation Criteria
4.3. Experimental Design
4.4. Experiment on Whole Datasets
4.5. Experiment on Whole and Cropped Datasets
5. Discussion
5.1. The Effect of Random Initialization
5.2. The Effect of
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SAR | Synthetic aperture radar |
HFEM | Histogram fitting error minimization |
DI | Difference image |
CNN | Convolutional neural network |
CRF | Conditional random fields |
FCM | Fuzzy c-means |
EM | Expectation maximization |
MTEP | Manual trial-and-error procedure |
FCNN | full convolutional neural network |
HPF | High-pass filters |
HN | half-normal distribution |
Appendix A. The Choice of DI
Appendix B. The Distribution of Changed and Unchanged Areas in DI
References
- Bazi, Y.; Bruzzone, L.; Melgani, F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 874–887. [Google Scholar] [CrossRef] [Green Version]
- Gong, M.; Li, Y.; Jiao, L.; Jia, M.; Su, L. SAR change detection based on intensity and texture changes. ISPRS J. Photogramm. Remote Sens. 2014, 93, 123–135. [Google Scholar] [CrossRef]
- Zhang, X.; Su, H.; Zhang, C.; Gu, X.; Tan, X.; Atkinson, P.M. Robust unsupervised small area change detection from SAR imagery using deep learning. ISPRS J. Photogramm. Remote Sens. 2021, 173, 79–94. [Google Scholar] [CrossRef]
- Gong, M.; Yang, H.; Zhang, P. Feature learning and change feature classification based on deep learning for ternary change detection in SAR images. ISPRS J. Photogramm. Remote Sens. 2017, 129, 212–225. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, Y. An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support. ISPRS J. Photogramm. Remote Sens. 2018, 146, 347–359. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Shi, Y.; Yamaguchi, Y. An automated approach for updating land cover maps based on integrated change detection and classification methods. ISPRS J. Photogramm. Remote Sens. 2012, 71, 86–95. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, P.; Feng, X.; Yuan, M. Separate segmentation of multi-temporal high-resolution remote sensing images for object-based change detection in urban area. Remote. Sens. Environ. 2017, 201, 243–255. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Du, P.; Liang, H.; Xia, J.; Li, Y. Object-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning. Remote. Sens. 2018, 10, 276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Fu, X.; Lv, X.; Yuan, J. Unsupervised Multitemporal Building Change Detection Framework Based on Cosegmentation Using Time-Series SAR. Remote. Sens. 2021, 13, 471. [Google Scholar] [CrossRef]
- Anniballe, R.; Noto, F.; Scalia, T.; Bignami, C.; Stramondo, S.; Chini, M.; Pierdicca, N. Earthquake damage mapping: An overall assessment of ground surveys and VHR image change detection after L’Aquila 2009 earthquake. Remote. Sens. Environ. 2018, 210, 166–178. [Google Scholar] [CrossRef]
- Janalipour, M.; Taleai, M. Building change detection after earthquake using multi-criteria decision analysis based on extracted information from high spatial resolution satellite images. Int. J. Remote Sens. 2017, 38, 82–99. [Google Scholar] [CrossRef]
- Washaya, P.; Balz, T.; Mohamadi, B. Coherence change-detection with sentinel-1 for natural and anthropogenic disaster monitoring in urban areas. Remote Sens. 2018, 10, 1026. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Bovolo, F.; Bruzzone, L. Unsupervised deep change vector analysis for multiple-change detection in VHR images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3677–3693. [Google Scholar] [CrossRef]
- Geng, J.; Ma, X.; Zhou, X.; Wang, H. Saliency-guided deep neural networks for SAR image change detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7365–7377. [Google Scholar] [CrossRef]
- Zhou, Z.H. A brief introduction to weakly supervised learning. Natl. Sci. Rev. 2018, 5, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Bovolo, F.; Bruzzone, L. Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1917–1929. [Google Scholar] [CrossRef]
- Rignot, E.J.; Van Zyl, J.J. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 896–906. [Google Scholar] [CrossRef] [Green Version]
- Bruzzone, L.; Prieto, D.F. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1171–1182. [Google Scholar] [CrossRef] [Green Version]
- Bovolo, F.; Bruzzone, L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2963–2972. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Zoppetti, C. Nonparametric change detection in multitemporal SAR images based on mean-shift clustering. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2022–2031. [Google Scholar] [CrossRef]
- Zhang, W.; Jiao, L.; Liu, F.; Yang, S.; Liu, J. Adaptive Contourlet Fusion Clustering for SAR Image Change Detection. IEEE Trans. Image Process. 2022, 31, 2295–2308. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Dong, J.; Li, B.; Xu, Q. Automatic change detection in synthetic aperture radar images based on PCANet. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1792–1796. [Google Scholar] [CrossRef]
- Shen, F.; Wang, Y.; Liu, C. Change Detection in SAR Images Based on Improved Non-Subsampled Shearlet Transform and Multi-Scale Feature Fusion CNN. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12174–12186. [Google Scholar] [CrossRef]
- Li, L.; Ma, H.; Jia, Z. Change Detection from SAR Images Based on Convolutional Neural Networks Guided by Saliency Enhancement. Remote Sens. 2021, 13, 3697. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Dong, J.; Du, Q.; Li, H.C. Synthetic aperture radar image change detection via siamese adaptive fusion network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10748–10760. [Google Scholar] [CrossRef]
- Zhang, W.; Jiao, L.; Liu, F.; Yang, S.; Song, W.; Liu, J. Sparse Feature Clustering Network for Unsupervised SAR Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Wang, J.; Gao, F.; Dong, J.; Zhang, S.; Du, Q. Change Detection From Synthetic Aperture Radar Images via Graph-Based Knowledge Supplement Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1823–1836. [Google Scholar] [CrossRef]
- Zhao, G.; Peng, Y. Semisupervised SAR image change detection based on a siamese variational autoencoder. Inf. Process. Manag. 2022, 59, 102726. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Wang, X.; Gao, Y.; Dong, J.; Wang, S. Sea ice change detection in SAR images based on convolutional-wavelet neural networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1240–1244. [Google Scholar] [CrossRef]
- Qu, X.; Gao, F.; Dong, J.; Du, Q.; Li, H.C. Change detection in synthetic aperture radar images using a dual-domain network. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Gao, F.; Dong, J.; Li, B.; Xu, Q.; Xie, C. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine. J. Appl. Remote Sens. 2016, 10, 046019. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, H.; Mou, L.; Liu, F.; Zhang, X.; Zhu, X.X.; Jiao, L. An unsupervised remote sensing change detection method based on multiscale graph convolutional network and metric learning. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Zhang, K.; Lv, X.; Chai, H.; Yao, J. Unsupervised SAR Image Change Detection for Few Changed Area Based on Histogram Fitting Error Minimization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–19. [Google Scholar] [CrossRef]
- Xiao, P.; Yuan, M.; Zhang, X.; Feng, X.; Guo, Y. Cosegmentation for object-based building change detection from high-resolution remotely sensed images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1587–1603. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Kittler, J.; Illingworth, J. Minimum error thresholding. Pattern Recognit. 1986, 19, 41–47. [Google Scholar] [CrossRef]
- Kim, W.; Kanezaki, A.; Tanaka, M. Unsupervised learning of image segmentation based on differentiable feature clustering. IEEE Trans. Image Process. 2020, 29, 8055–8068. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Gong, M.; Su, L.; Jia, M.; Chen, W. Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst. 2013, 22, 98–109. [Google Scholar] [CrossRef]
- Gao, F. SAFNet. Available online: https://github.com/summitgao/SAR_CD_SAFNet/blob/main/SAFNet.ipynb (accessed on 12 December 2022).
- Gao, F. DDNet. Available online: https://github.com/summitgao/SAR_CD_DDNet (accessed on 12 December 2022).
- Chierchia, G.; El Gheche, M.; Scarpa, G.; Verdoliva, L. Multitemporal SAR image despeckling based on block-matching and collaborative filtering. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5467–5480. [Google Scholar] [CrossRef]
- Moser, G.; Serpico, S.B. Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2972–2982. [Google Scholar] [CrossRef]
Dataset | Bern | Ottawa | Tongzhou Original | Tongzhou Despeckled |
---|---|---|---|---|
ENL | 18.5083 | 16.1308 | 5.8237 | 30.7952 |
Dataset | Method | Criteria | ||||
---|---|---|---|---|---|---|
OA | Precision | Recall | mIoU | KC | ||
Bern | DDNet [31] | 0.9966 | 0.9320 | 0.7950 | 0.7514 | 0.8564 |
DDNet(WP) [31] | 0.9967 | 0.9176 | 0.8183 | 0.7623 | 0.8635 | |
HFEMCRF [34] | 0.9959 | 0.7877 | 0.9273 | 0.7419 | 0.8497 | |
HFEMCRF(WP) [34] | 0.9844 | 0.4486 | 0.9542 | 0.4391 | 0.6033 | |
FCMMRF [44] | 0.9963 | 0.8157 | 0.9152 | 0.7584 | 0.8607 | |
FCMMRF(WP) [44] | 0.9888 | 0.5351 | 0.9420 | 0.5181 | 0.6773 | |
SAFNet [25] | 0.9956 | 0.8019 | 0.8727 | 0.7179 | 0.8336 | |
HFEM-PSPNet | 0.9919 | 0.7126 | 0.6139 | 0.4920 | 0.6555 | |
HFEM-PSPNet-Pre | 0.9882 | 0.6760 | 0.1463 | 0.1367 | 0.2371 | |
HFEM-FCNN | 0.9966 | 0.8783 | 0.8555 | 0.7649 | 0.8651 | |
HFEM-Unet | 0.9966 | 0.9178 | 0.8026 | 0.7488 | 0.8546 |
Dataset | Method | Criteria | ||||
---|---|---|---|---|---|---|
OA | Precision | Recall | mIoU | KC | ||
Ottawa | DDNet [31] | 0.9782 | 0.9597 | 0.8999 | 0.8672 | 0.9160 |
DDNet(WP) [31] | 0.9802 | 0.9361 | 0.9388 | 0.8822 | 0.9257 | |
HFEMCRF [34] | 0.9706 | 0.9637 | 0.8458 | 0.8196 | 0.8837 | |
HFEMCRF(WP) [34] | 0.9668 | 0.9304 | 0.8538 | 0.8026 | 0.8709 | |
FCMMRF [44] | 0.9753 | 0.9361 | 0.9054 | 0.8527 | 0.9059 | |
FCMMRF(WP) [44] | 0.9699 | 0.8975 | 0.9141 | 0.8277 | 0.8878 | |
SAFNet [25] | 0.9615 | 0.9931 | 0.7617 | 0.7577 | 0.8402 | |
HFEM-PSPNet | 0.9325 | 0.9262 | 0.6229 | 0.5935 | 0.7077 | |
HFEM-PSPNet-Pre | 0.9385 | 0.9284 | 0.6622 | 0.6300 | 0.7386 | |
HFEM-FCNN | 0.9703 | 0.9897 | 0.8206 | 0.8137 | 0.8801 | |
HFEM-Unet | 0.9708 | 0.9911 | 0.8225 | 0.8165 | 0.8821 |
Dataset | Method | Criteria | ||||
---|---|---|---|---|---|---|
OA | Precision | Recall | mIoU | KC | ||
Tongzhou | DDNet | 0.8136 | 0.2422 | 0.9858 | 0.2414 | 0.3235 |
DDNet(WP) [31] | 0.8040 | 0.2328 | 0.9836 | 0.2319 | 0.3093 | |
HFEMCRF [34] | 0.9681 | 0.6687 | 0.9299 | 0.6366 | 0.7612 | |
HFEMCRF(WP) [34] | 0.9598 | 0.6085 | 0.9314 | 0.5824 | 0.7154 | |
FCMMRF [44] | 0.8839 | 0.3400 | 0.9889 | 0.3388 | 0.4575 | |
FCMMRF(WP) [44] | 0.8666 | 0.3094 | 0.9889 | 0.3084 | 0.4180 | |
SAFNet [25] | 0.8900 | 0.3496 | 0.9629 | 0.3450 | 0.4650 | |
HFEM-PSPNet | 0.9549 | 0.6582 | 0.5200 | 0.4094 | 0.5575 | |
HFEM-PSPNet-Pre | 0.9483 | 0.6333 | 0.3355 | 0.2810 | 0.4143 | |
HFEM-FCNN | 0.9768 | 0.7822 | 0.8522 | 0.6888 | 0.8034 | |
HFEM-Unet | 0.9771 | 0.7943 | 0.8346 | 0.6863 | 0.8017 |
Dataset | Method | Criteria | ||||
---|---|---|---|---|---|---|
OA | Precision | Recall | mIoU | KC | ||
All 63 | DDNet [31] | 0.8973 | 0.9035 | 0.4463 | 0.3638 | 0.4074 |
DDNet(WP) [31] | 0.8784 | 0.9129 | 0.4331 | 0.3622 | 0.4046 | |
HFEMCRF [34] | 0.9793 | 0.8380 | 0.8397 | 0.6939 | 0.7490 | |
HFEMCRF(WP) [34] | 0.9728 | 0.8578 | 0.5043 | 0.4341 | 0.4981 | |
FCMMRF [44] | 0.9005 | 0.9403 | 0.4014 | 0.3610 | 0.4059 | |
FCMMRF(WP) [44] | 0.8775 | 0.9484 | 0.3664 | 0.3358 | 0.3837 | |
SAFNet [25] | 0.9220 | 0.8326 | 0.4189 | 0.3239 | 0.3806 | |
HFEM-PSPNet | 0.9644 | 0.6524 | 0.9111 | 0.6052 | 0.6623 | |
HFEM-PSPNet-Pre | 0.9639 | 0.6385 | 0.9057 | 0.5924 | 0.6449 | |
HFEM-FCNN | 0.9814 | 0.7923 | 0.9128 | 0.7161 | 0.7754 | |
HFEM-Unet | 0.9817 | 0.7805 | 0.9325 | 0.7226 | 0.7806 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Lv, X.; Guo, B.; Chai, H. Unsupervised SAR Image Change Detection Based on Histogram Fitting Error Minimization and Convolutional Neural Network. Remote Sens. 2023, 15, 470. https://doi.org/10.3390/rs15020470
Zhang K, Lv X, Guo B, Chai H. Unsupervised SAR Image Change Detection Based on Histogram Fitting Error Minimization and Convolutional Neural Network. Remote Sensing. 2023; 15(2):470. https://doi.org/10.3390/rs15020470
Chicago/Turabian StyleZhang, Kaiyu, Xiaolei Lv, Bin Guo, and Huiming Chai. 2023. "Unsupervised SAR Image Change Detection Based on Histogram Fitting Error Minimization and Convolutional Neural Network" Remote Sensing 15, no. 2: 470. https://doi.org/10.3390/rs15020470
APA StyleZhang, K., Lv, X., Guo, B., & Chai, H. (2023). Unsupervised SAR Image Change Detection Based on Histogram Fitting Error Minimization and Convolutional Neural Network. Remote Sensing, 15(2), 470. https://doi.org/10.3390/rs15020470