A Comparison of Machine Learning and Empirical Approaches for Deriving Bathymetry from Multispectral Imagery
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Water Extraction
2.2.2. Sun-Glint Correction
2.2.3. Tidal Correction
3. Methods
3.1. Stumpf Empirical Method
3.2. Random Forest Method
3.3. Neural Network Method
3.4. Support Vector Machine Method
3.5. Water Depth Inversion Experiment
3.5.1. Correlation Analysis and Evaluation Index
3.5.2. Model Construction
4. Results
4.1. Overall Model Accuracy
4.2. Model Error Analysis
4.3. Influence of Sample Number on Model Accuracy
4.4. Inversion Result
5. Discussion
6. Conclusions
- (1)
- Stumpf empirical and machine learning models are capable of inverting optically shallow water depth based on multispectral images and measuring bathymetry data, and the inversion results can reflect the real water depth trends.
- (2)
- The machine learning model displayed excellent nonlinear fitting ability, and its overall accuracy of water depth inversion was higher than that of the Stumpf empirical model, especially when the water depth was greater than 15 m. Among the random forest model, the neural network model, and the support vector machine model, the random forest model performed optimally.
- (3)
- When the water depth was less than 15 m, the accuracy of the Stumpf empirical model was not significantly different from that of the machine learning-based models. Additionally, its parameters were simple because only the reflectance of blue and green bands are required, and the model was not sensitive to the number of samples, and required only a small number to complete the construction of the model, which highlights the potential wide application of the Stumpf empirical model.
- (4)
- The machine learning model was greatly affected by the number of samples and model parameters, indicating that these parameters need to be adjusted for different experiments. In addition, the accuracy of the model could be improved by a sufficient number of data samples. As an additional requirement, the distribution range of the training dataset should be larger than the inversion range to improve the applicability and generalization ability of the model.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodman, J.A.; Purkis, S.J.; Phinn, S.R. Coral Reef Remote Sensing: A Guide for Mapping, Monitoring and Management; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Abdallah, H.; Bailly, J.-S.; Baghdadi, N.N.; Saint-Geours, N.; Fabre, F. Potential of Space-Borne LiDAR Sensors for Global Bathymetry in Coastal and Inland Waters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 6, 202–216. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dong, W.; Zhang, P.; Yan, F. Progress in Water Depth Mapping from Visible Remote Sensing Data. Mar. Sci. Bull. 2007, 26, 92–101. [Google Scholar]
- Pydyn, A.; Popek, M.; Kubacka, M.; Janowski, L. Exploration and reconstruction of a medieval harbour using hydroacoustics, 3-D shallow seismic and underwater photogrammetry: A case study from Puck, southern Baltic Sea. Archaeol. Prospect. 2021, 28, 527–542. [Google Scholar] [CrossRef]
- Huang, W.; Su, F.; Yang, X.; Zhang, Y. Techniques of Water Depth Remote Sensing Retrieval and Underwater Obstacle Detection. Hydrogr. Surv. Charting 2015, 35, 16–19. [Google Scholar]
- Dang, F.; Ding, Q. A Study of shallow water depth extraction using Landsat imagery. Remote Sens. Land Resour. 2001, 13, 53–58. [Google Scholar]
- Teng, H.; MA, F.; LI, H.; YE, Q.; Xin, X. The Development and Model Analysis of The Retrieving Sounding Technology Using Satellite Remote Sensing. In Proceedings of the 21st Comprehensive Symposium on Ocean Surveying and Mapping, Chengdu, China, 12–17 September 2009. [Google Scholar]
- Lyzenga, D.R. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379–383. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, J.; Zhang, J.; Zhang, Z.; Wang, J. Progress in Shallow Water Depth Mapping from Optical Remote Sensing. Adv. Mar. Sci. 2018, 36, 331–351. [Google Scholar]
- Liu, Y.; Deng, R.; Qin, Y.; Cao, B.; Liang, Y.; Liu, Y.; Tian, J.; Wang, S. Rapid estimation of bathymetry from multispectral imagery without in situ bathymetry data. Appl. Opt. 2019, 58, 7538–7551. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, R.; Li, J.; Qin, Y.; Xiong, L.; Chen, Q.; Liu, X. Multispectral Bathymetry via Linear Unmixing of the Benthic Reflectance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4349–4363. [Google Scholar] [CrossRef]
- Wang, H.; Huang, W.; Wu, D.; Cheng, Y. Bathymetry Inversion Method Based on Adaptive Empricial Semi-Analytical Model without in situ Data-A Case Study in South China Sea. Acta Opt. Sin. 2022, 42, 87–98. [Google Scholar]
- Polcyn, F.C.; Lyzenga, D.R. Calculations of Water Depth from ERTS-MSS Data; Environmental Research Institute of Michigan: Ann Arbor, MI, USA, 1973. [Google Scholar]
- Tanis, F.J.; Byrnes, H.J. Optimization of multispectral sensors for bathymetry applications. In Proceedings of the 19th International Symposium on Remote Sensing of Enviroment, Ann Arbor, MI, USA, 21–25 October 1985; pp. 865–874. [Google Scholar]
- Paredes, J.M.; Spero, R.E. Water depth mapping from passive remote sensing data under a generalized ratio assumption. Appl. Opt. 1983, 22, 1134–1135. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Hamylton, S.M.; Hedley, J.D.; Beaman, R.J. Derivation of High-Resolution Bathymetry from Multispectral Satellite Imagery: A Comparison of Empirical and Optimisation Methods through Geographical Error Analysis. Remote Sens. 2015, 7, 16257–16273. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Wang, J.; Du, X. Study on Water Depth Extraction from Remote Sensing Imagery in Jiangsu Coastal Zone. Natl. Remote Sens. Bull. 2007, 11, 373–379. [Google Scholar]
- Dang, F.; Ding, Q. A Technique for Extracting Water Depth Information from Multispectral Scanner Data in the South China Sea. Mar. Sci. Bull. 2003, 22, 55–60. [Google Scholar]
- Lu, T.; Chen, S.; Tu, Y.; Yu, Y.; Cao, Y.; Jiang, D. Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data. Chin. Geogr. Sci. 2019, 29, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Casal, G.; Monteys, X.; Hedley, J.; Harris, P.; Cahalane, C.; McCarthy, T. Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data. Int. J. Remote Sens. 2019, 40, 2855–2879. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Wang, W. Establishment of a RS-Fathoming Correlation Model. J. Hohai Univ. 1998, 26, 98–102. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Zhang, D.; Qian, Y. An underwater bathymetry reversion in the radial sand ridge group region of the southern Huanghai Sea using the remote sensing technology. Acta Oceanol. Sin. 2009, 31, 39–45. [Google Scholar]
- Ao, Y.; Li, H.; Zhu, L.; Ali, S.; Yang, Z. The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. J. Pet. Sci. Eng. 2018, 174, 776–789. [Google Scholar] [CrossRef]
- Cheng, K.; Zhu, Y. A Summary of Machine Learning and Related Algorithms. Stat. Inf. Forum. 2007, 22, 105–112. [Google Scholar]
- Wang, Y.; Zhang, Y. Study on remote sensing of water depth based on BP artificial neural networks. Ocean. Eng. 2005, 23, 37–42. [Google Scholar]
- Wang, J.; Ma, Y.; Zhang, J. Multiple kernel support vector regression based on fuzzy membership for remote sensing water depth fusion detection. Mar. Environ. Sci. 2018, 37, 130–136. [Google Scholar]
- Qiu, Y.; Shen, W.; Hui, X.; Zhang, H. Satellite-Derived Bathymetry Using Random Forest Model. J. Ocean. Technol. 2019, 34, 75–79. [Google Scholar]
- Ai, B.; Wen, Z.; Wang, Z.; Wang, R.; Su, D.; Li, C.; Yang, F. Convolutional Neural Network to Retrieve Water Depth in Marine Shallow Water Area From Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2888–2898. [Google Scholar] [CrossRef]
- Zhu, W.; Ye, L.; Qiu, Z.; Luan, K.; He, N.; Wei, Z.; Yang, F.; Yue, Z.; Zhao, S.; Yang, F. Research of the Dual-Band Log-Linear Analysis Model Based on Physics for Bathymetry without In-Situ Depth Data in the South China Sea. Remote Sens. 2021, 13, 4331. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Hedley, J.D.; Harborne, A.R.; Mumby, P.J. Technical note: Simple and robust removal of sun glint for mapping shallow-ater benthos. Int. J. Remote Sens. 2005, 26, 2107–2112. [Google Scholar] [CrossRef]
- Fan, J.; Pan, J. A note on the Levenberg–Marquardt parameter. Appl. Math. Comput. 2009, 207, 351–359. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, S.; Wang, M. Water Depth Inversion based on Landsat-8 Date and Random Forest Algorithm. J. Phys. Conf. Ser. 2020, 1437, 012073. [Google Scholar] [CrossRef]
- Lai, W.; Lee, Z.; Wang, J.; Wang, Y.; Garcia, R.; Zhang, H. A Portable Algorithm to Retrieve Bottom Depth of Optically Shallow Waters from Top-Of-Atmosphere Measurements. J. Remote Sens. 2022, 2022, 1–16. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Du, X.; Wu, T. Support Vector Machines for Regression. J. Syst. Simul. 2003, 11, 1580–1585. [Google Scholar]
- Qi, J.; Zhang, D.; Ren, Z.; Cui, A.; Yin, F.; Qin, J.; Zhan, J.; Zhu, J. Determination of the initial value ranges of nonlinear solutions for a log ratio bathymetric inversion model and bathymetry retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10875–10888. [Google Scholar] [CrossRef]
- Ding, S.; Qi, B.; Tan, H. An Overview on Theory and Algorithm of Support Vector Machines. J. Univ. Electron. Sci. Technol. China 2011, 40, 2–10. [Google Scholar]
- Li, J.; Knapp, D.E.; Schill, S.R.; Roelfsema, C.; Phinn, S.; Silman, M.; Mascaro, J.; Asner, G.P. Adaptive bathymetry estimation for shallow coastal waters using Planet Dove satellites. Remote Sens. Environ. 2019, 232, 111302. [Google Scholar] [CrossRef]
- Sagawa, T.; Yamashita, Y.; Okumura, T.; Yamanokuchi, T. Satellite Derived Bathymetry Using Machine Learning and Multi-Temporal Satellite Images. Remote Sens. 2019, 11, 1155. [Google Scholar] [CrossRef]
Bands | Resolution (m) | The Spectral Range (nm) |
---|---|---|
Band1(Coastal aerosol) | 60 | 421.7–463.7 |
Band2(Blue) | 10 | 426.4–558.4 |
Band3(Green) | 10 | 523.8–595.8 |
Band4(Red) | 10 | 633.6–695.6 |
Band5(Red Edge 1) | 20 | 689.1–719.1 |
Band6(Red Edge 2) | 20 | 725.5–755.5 |
Band7(Red Edge 3) | 20 | 762.8–802.8 |
Band8(NIR) | 10 | 726.8–938.8 |
Band8A(Red Edge 4) | 20 | 843.7–885.7 |
Band9(Water vapor) | 60 | 925.1–965.1 |
Band10(Cirrus) | 60 | 1342.5–1404.5 |
Band11(MIR 1) | 20 | 1522.7–1704.7 |
Band12(MIR 2) | 20 | 2027.4–2377.4 |
Band | B2 | B3 | B4 | B2/B3 | B2/B4 | B3/B4 |
---|---|---|---|---|---|---|
Correlation | −0.63 | −0.72 | −0.49 | 0.81 | −0.18 | −0.78 |
Model Name | Regression Coefficient | Root Mean Square Error/Meter | Mean Absolute Error/Meter |
---|---|---|---|
Stumpf model | 0.83 | 2.59 | 1.61 |
Random forest model | 0.96 | 1.41 | 0.95 |
BP neural network model | 0.95 | 1.46 | 0.98 |
Support vector machine model | 0.94 | 1.50 | 0.96 |
Water Depth Range | Number of Samples | RMSE (m) | MAE (m) | ||||||
---|---|---|---|---|---|---|---|---|---|
Stumpf | RF | BP | SVM | Stumpf | RF | BP | SVM | ||
0–5 m | 615 | 1.42 | 0.82 | 0.97 | 0.99 | 1.09 | 0.55 | 0.66 | 0.56 |
5–10 m | 862 | 1.27 | 1.00 | 1.04 | 1.02 | 0.99 | 0.72 | 0.74 | 0.74 |
10–15 m | 232 | 2.20 | 1.93 | 2.06 | 1.90 | 1.66 | 1.39 | 1.49 | 1.38 |
15–20 m | 102 | 4.51 | 2.86 | 2.78 | 2.53 | 3.56 | 2.25 | 2.23 | 1.85 |
20–25 m | 165 | 6.73 | 2.44 | 2.32 | 2.95 | 5.58 | 1.92 | 1.90 | 2.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Tang, Y.; Jing, W.; Li, Y.; Yang, J.; Deng, Y.; Zhang, Y. A Comparison of Machine Learning and Empirical Approaches for Deriving Bathymetry from Multispectral Imagery. Remote Sens. 2023, 15, 393. https://doi.org/10.3390/rs15020393
Zhou W, Tang Y, Jing W, Li Y, Yang J, Deng Y, Zhang Y. A Comparison of Machine Learning and Empirical Approaches for Deriving Bathymetry from Multispectral Imagery. Remote Sensing. 2023; 15(2):393. https://doi.org/10.3390/rs15020393
Chicago/Turabian StyleZhou, Wenneng, Yimin Tang, Wenlong Jing, Yong Li, Ji Yang, Yingbin Deng, and Yumeng Zhang. 2023. "A Comparison of Machine Learning and Empirical Approaches for Deriving Bathymetry from Multispectral Imagery" Remote Sensing 15, no. 2: 393. https://doi.org/10.3390/rs15020393
APA StyleZhou, W., Tang, Y., Jing, W., Li, Y., Yang, J., Deng, Y., & Zhang, Y. (2023). A Comparison of Machine Learning and Empirical Approaches for Deriving Bathymetry from Multispectral Imagery. Remote Sensing, 15(2), 393. https://doi.org/10.3390/rs15020393