The CAESAR Project for the ASI Space Weather Infrastructure
Abstract
:1. Introduction
2. CAESAR Overview
- To advance our understanding of the origin and evolution of SWE phenomena;
- To provide both new and long-standing data, codes, and models to populate the ASPIS prototype;
- To design the architecture and realise the ASPIS prototype with findability, accessibility, interoperability, and reusability data (FAIR-data), and flexible and user-friendly infrastructure;
- To pave the way for future reliable and advanced SWE forecasting capabilities;
- To ensure the efficient dissemination of results and infrastructure and foster future SWE studies.
3. CAESAR Science
4. ASPIS Prototype
ASPIS Products
- Calibrated data:
- Full-disk LoS magnetic and velocity maps from Tor Vergata Synoptic Solar Telescope (TSST) [140];
- H-alpha images from the TSST [141];
- Solar Wind Analyser/Solar Orbiter data;
- Swarm LEO satellite data;
- CSES LEO satellite data [142];
- Low-Frequency Array (LOFAR) radio flux;
- Data from Alpha Magnetic Spectrometer (AMS) and Payload for Antimatter Matter Exploration and Light-nuclei (PAMELA);
- Anomalous Long Term Effects on Astronauts (ALTEA) and Light Ions Detector (LIDAL) data and dose rates;
- Derived data:
- Features of active regions and probability of flare occurrence;
- Catalogue of flares, SEPs, geoeffective CMEs, and ESP-associated shocks;
- Parameters and features of interplanetary shocks, solar wind streams, magnetosheath, magnetosphere, and ionosphere;
- SEPs properties and transport parameters at several heliographic locations;
- Time series and global maps of the magnetospheric and ionospheric origin field at ground, and of the induced geoelectric field at ground from the (Magnetospheric–Ionospheric–Geomagnetically Induced current (MA.I.GIC., [105]) model;
- Ionospheric maps and indices;
- GCR properties and propagation parameters;
- GPS LoL events maps;
- GIC index and level alert for Italy and along arrays of selected geomagnetic observatories;
- Output of test particle simulations for GCRs;
- Models:
- Computational methods for desaturation of EUV images;
- Computational method for image reconstruction from Fourier X-ray data;
- Computational methods for detection and tracking of global EUV waves;
- Ionospheric and magnetospheric current systems using TS04 model and ground magnetometer observations and applying the technique described in Piersanti and Villante [145];
- Simulations of MHD instabilities;
- Magnetospheric precipitation model [107];
- Exospheric model [146];
- Near-real-time data and tools:
- Automated detection of AR features;
- Geomagnetic ground-based observations;
- Forecasting model of the SYM-H geomagnetic index;
- Values of the equatorial plasma mass density in the inner magnetosphere updated every 15 min;
- Ionospheric physical parameters from ionosonde;
- Rome and Testa Grigia cosmic-ray detector data;
5. CAESAR Dissemination Plan
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Opgenoorth, H.J.; Wimmer-Schweingruber, R.F.; Belehaki, A.; Berghmans, D.; Hapgood, M.; Hesse, M.; Kauristie, K.; Lester, M.; Lilensten, J.; Messerotti, M.; et al. Assessment and recommendations for a consolidated European approach to space weather—As part of a global space weather effort. J. Space Weather Space Clim. 2019, 9, A37. [Google Scholar] [CrossRef]
- Lilensten, J.; Belehaki, A. Developing the scientific basis for monitoring, modelling and predicting space weather. Acta Geophys. 2009, 57, 1–14. [Google Scholar] [CrossRef]
- Plainaki, C.; Lilensten, J.; Radioti, A.; Andriopoulou, M.; Milillo, A.; Nordheim, T.A.; Dandouras, I.; Coustenis, A.; Grassi, D.; Mangano, V.; et al. Planetary space weather: Scientific aspects and future perspectives. J. Space Weather Space Clim. 2016, 6, A31. [Google Scholar] [CrossRef] [Green Version]
- Bentley, R.; Csillaghy, A.; Aboudarham, J.; Jacquey, C.; Hapgood, M.; Bocchialini, K.; Messerotti, M.; Brooke, J.; Gallagher, P.; Fox, P.; et al. Helio: The heliophysics integrated observatory. Adv. Space Res. 2011, 47, 2235–2239. [Google Scholar] [CrossRef]
- Aboudarham, J.; Bentley, R.; Csillaghy, A.; Jacquey, C.; Richards, P.; Bocchialini, K.; Messerotti, M.; Brooke, J.; Gallagher, P.; Roberts, A.; et al. HELIO, a Powerful Tool for Space Weather Science; BASS2000; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Bentley, R.; Lapenta, G.; Blanc, M.; Fox, P.; Walker, R.; Team, C. VOs and Heliophysics: Would anyone like some CASSIS? In Proceedings of the AGU Fall Meeting Abstracts; IN23B-1358; American Geophysical Union: Washington, DC, USA, 2010; Volume 2010. [Google Scholar]
- Clette, F. Past and future sunspot indices: New goals for SoTerIA. J. Atmos. Sol.-Terr. Phys. 2011, 73, 182–186. [Google Scholar] [CrossRef]
- Harrison, R.; Davies, J.; Perry, C.; Moestl, C.; Rouillard, A.; Bothmer, V.; Rodriguez, L.; Eastwood, J.; Kilpua, E.; Gallagher, P.; et al. Overview of the HELCATS project. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2017; p. 5296. [Google Scholar]
- Malandraki, O.; Klein, K.L.; Vainio, R.; Agueda, N.; Núñez, M.; Heber, B.; Bütikofer, R.; Sarlanis, C.; Crosby, N.; Share, G.; et al. High energy solar particle events forecasting and analysis: The HESPERIA project. In Proceedings of the 34th International Cosmic Ray Conference ICRC 2015, The Hague, The Netherlands, 30 July–6 August 2015. [Google Scholar]
- Plainaki, C.; Antonucci, M.; Bemporad, A.; Berrilli, F.; Bertucci, B.; Castronuovo, M.; De Michelis, P.; Giardino, M.; Iuppa, R.; Laurenza, M.; et al. Current state and perspectives of Space Weather science in Italy. J. Space Weather Space Clim. 2020, 10, 6. [Google Scholar] [CrossRef]
- Abramenko, V.I.; Carbone, V.; Yurchyshyn, V.; Goode, P.R.; Stein, R.F.; Lepreti, F.; Capparelli, V.; Vecchio, A. Turbulent Diffusion in the Photosphere as Derived from Photospheric Bright Point Motion. Astrophys. J. 2011, 743, 133. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, A.; Laurenza, M.; Meduri, D.; Carbone, V.; Storini, M. The Dynamics of the Solar Magnetic Field: Polarity Reversals, Butterfly Diagram, and Quasi-Biennial Oscillations. Astrophys. J. 2012, 749, 27. [Google Scholar] [CrossRef]
- Lepreti, F.; Carbone, V.; Abramenko, V.I.; Yurchyshyn, V.; Goode, P.R.; Capparelli, V.; Vecchio, A. Turbulent Pair Dispersion of Photospheric Bright Points. Astrophys. J. Lett. 2012, 759, L17. [Google Scholar] [CrossRef] [Green Version]
- Giannattasio, F.; Consolini, G.; Berrilli, F.; Del Moro, D. The Complex Nature of Magnetic Element Transport in the Quiet Sun: The Lévy-walk Character. Astrophys. J. 2019, 878, 33. [Google Scholar] [CrossRef]
- Giannattasio, F.; Consolini, G. The Complex Nature of Magnetic Element Transport in the Quiet Sun: The Multiscaling Character. Astrophys. J. 2021, 908, 142. [Google Scholar] [CrossRef]
- Cauzzi, G.; Reardon, K.P.; Uitenbroek, H.; Cavallini, F.; Falchi, A.; Falciani, R.; Janssen, K.; Rimmele, T.; Vecchio, A.; Wöger, F. The solar chromosphere at high resolution with IBIS. I. New insights from the Ca II 854.2 nm line. Astron. Astrophys. 2008, 480, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Reardon, K.P.; Lepreti, F.; Carbone, V.; Vecchio, A. Evidence of Shock-driven Turbulence in the Solar Chromosphere. Astrophys. J. Lett. 2008, 683, L207. [Google Scholar] [CrossRef] [Green Version]
- Forbes, T.G. A review on the genesis of coronal mass ejections. J. Geophys. Res. 2000, 105, 23153–23166. [Google Scholar] [CrossRef]
- Aschwanden, M.J. Particle acceleration and kinematics in solar flares—A Synthesis of Recent Observations and Theoretical Concepts (Invited Review). Space Sci. Rev. 2002, 101, 1–227. [Google Scholar] [CrossRef]
- Temmer, M. Space weather: The solar perspective. Living Rev. Sol. Phys. 2021, 18, 4. [Google Scholar] [CrossRef]
- Romano, P.; Zuccarello, F. Flare occurrence and the spatial distribution of the magnetic helicity flux. Astron. Astrophys. 2011, 535, A1. [Google Scholar] [CrossRef]
- Zuccarello, F.; Balmaceda, L.; Cessateur, G.; Cremades, H.; Guglielmino, S.L.; Lilensten, J.; Dudok de Wit, T.; Kretzschmar, M.; Lopez, F.M.; Mierla, M.; et al. Solar activity and its evolution across the corona: Recent advances. J. Space Weather Space Clim. 2013, 3, A18. [Google Scholar] [CrossRef] [Green Version]
- Laurenza, M.; Consolini, G.; Storini, M.; Damiani, A. The Weibull functional form for SEP event spectra. J. Phys. Conf. Ser. 2015, 632, 012066. [Google Scholar] [CrossRef] [Green Version]
- Frassati, F.; Laurenza, M.; Bemporad, A.; West, M.J.; Mancuso, S.; Susino, R.; Alberti, T.; Romano, P. Acceleration of Solar Energetic Particles through CME-driven Shock and Streamer Interaction. Astrophys. J. 2022, 926, 227. [Google Scholar] [CrossRef]
- Cicogna, D.; Berrilli, F.; Calchetti, D.; Del Moro, D.; Giovannelli, L.; Benvenuto, F.; Campi, C.; Guastavino, S.; Piana, M. Flare-forecasting Algorithms Based on High-gradient Polarity Inversion Lines in Active Regions. Astrophys. J. 2021, 915, 38. [Google Scholar] [CrossRef]
- Laurenza, M.; Cliver, E.W.; Hewitt, J.; Storini, M.; Ling, A.G.; Balch, C.C.; Kaiser, M.L. A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 2009, 7, S04008. [Google Scholar] [CrossRef] [Green Version]
- Laurenza, M.; Alberti, T.; Cliver, E.W. A Short-term ESPERTA-based Forecast Tool for Moderate-to-extreme Solar Proton Events. Astrophys. J. 2018, 857, 107. [Google Scholar] [CrossRef]
- Campi, C.; Benvenuto, F.; Massone, A.M.; Bloomfield, D.S.; Georgoulis, M.K.; Piana, M. Feature Ranking of Active Region Source Properties in Solar Flare Forecasting and the Uncompromised Stochasticity of Flare Occurrence. Astrophys. J. 2019, 883, 150. [Google Scholar] [CrossRef]
- Stumpo, M.; Benella, S.; Laurenza, M.; Alberti, T.; Consolini, G.; Marcucci, M.F. Open Issues in Statistical Forecasting of Solar Proton Events: A Machine Learning Perspective. Space Weather 2021, 19, e02794. [Google Scholar] [CrossRef]
- Wang, H. Evolution of vector magnetic fields and the August 27 1990 X-3 flare. Sol. Phys. 1992, 140, 85–98. [Google Scholar] [CrossRef]
- Toriumi, S.; Wang, H. Flare-productive active regions. Living Rev. Sol. Phys. 2019, 16, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasantharaju, N.; Vemareddy, P.; Ravindra, B.; Doddamani, V.H. Magnetic Imprints of Eruptive and Noneruptive Solar Flares as Observed by Solar Dynamics Observatory. Astrophys. J. 2022, 927, 86. [Google Scholar] [CrossRef]
- Cliver, E.W.; Laurenza, M.; Storini, M.; Thompson, B.J. On the Origins of Solar EIT Waves. Astrophys. J. 2005, 631, 604–611. [Google Scholar] [CrossRef]
- West, M.J.; Seaton, D.B.; D’Huys, E.; Mierla, M.; Laurenza, M.; Meyer, K.A.; Berghmans, D.; Rachmeler, L.R.; Rodriguez, L.; Stegen, K. A Review of the Extended EUV Corona Observed by the Sun Watcher with Active Pixels and Image Processing (SWAP) Instrument. Sol. Phys. 2022, 297, 136. [Google Scholar] [CrossRef]
- Gopalswamy, N.; Yashiro, S.; Akiyama, S. Kinematic and Energetic Properties of the 2012 March 12 Polar Coronal Mass Ejection. Astrophys. J. 2015, 809, 106. [Google Scholar] [CrossRef] [Green Version]
- Odstrcil, D. Modeling 3-D solar wind structure. Adv. Space Res. 2003, 32, 497–506. [Google Scholar] [CrossRef]
- Cargill, P.J. On the Aerodynamic Drag Force Acting on Interplanetary Coronal Mass Ejections. Sol. Phys. 2004, 221, 135–149. [Google Scholar] [CrossRef]
- Pomoell, J.; Poedts, S. EUHFORIA: European heliospheric forecasting information asset. J. Space Weather Space Clim. 2018, 8, A35. [Google Scholar] [CrossRef] [Green Version]
- Cane, H.V.; Richardson, I.G.; St. Cyr, O.C. Coronal mass ejections, interplanetary ejecta and geomagnetic storms. Geophys. Res. Lett. 2000, 27, 3591–3594. [Google Scholar] [CrossRef]
- Aran, A.; Lario, D.; Sanahuja, B.; Marsden, R.G.; Dryer, M.; Fry, C.D.; McKenna-Lawlor, S.M.P. Modeling and forecasting solar energetic particle events at Mars: The event on 6 March 1989. Astron. Astrophys. 2007, 469, 1123–1134. [Google Scholar] [CrossRef]
- Vainio, R.; Desorgher, L.; Heynderickx, D.; Storini, M.; Flückiger, E.; Horne, R.B.; Kovaltsov, G.A.; Kudela, K.; Laurenza, M.; McKenna-Lawlor, S.; et al. Dynamics of the Earth’s Particle Radiation Environment. Space Sci. Rev. 2009, 147, 187–231. [Google Scholar] [CrossRef]
- Diego, P.; Storini, M.; Parisi, M.; Cordaro, E.G. AE index variability during corotating fast solar wind streams. J. Geophys. Res. Space Phys. 2005, 110, A06105. [Google Scholar] [CrossRef]
- D’Amicis, R.; Bruno, R.; Bavassano, B. Is geomagnetic activity driven by solar wind turbulence? Geophys. Res. Lett. 2007, 34, L05108. [Google Scholar] [CrossRef]
- Lario, D.; Ho, G.C.; Decker, R.B.; Roelof, E.C.; Desai, M.I.; Smith, C.W. ACE Observations of Energetic Particles Associated with Transient Interplanetary Shocks. AIP Conf. Proc. 2003, 679, 640–643. [Google Scholar] [CrossRef]
- Kallenrode, M.B. A statistical survey of 5-MeV proton events at transient interplanetary shocks. J. Geophys. Res. 1996, 101, 24393–24410. [Google Scholar] [CrossRef]
- Perri, S.; Zimbardo, G. Superdiffusive transport of electrons accelerated at corotating interaction regions. J. Geophys. Res. (Space Phys.) 2008, 113, A03107. [Google Scholar] [CrossRef]
- Dresing, N.; Theesen, S.; Klassen, A.; Heber, B. Efficiency of particle acceleration at interplanetary shocks: Statistical study of STEREO observations. Astron. Astrophys. 2016, 588, A17. [Google Scholar] [CrossRef] [Green Version]
- Laurenza, M.; Consolini, G.; Storini, M.; Pallocchia, G.; Damiani, A. The Weibull functional form for the energetic particle spectrum at interplanetary shock waves. J. Phys. Conf. Ser. 2016, 767, 012015. [Google Scholar] [CrossRef] [Green Version]
- Pallocchia, G.; Laurenza, M.; Consolini, G. On Weibull’s Spectrum of Non-relativistic Energetic Particles at IP Shocks: Observations and Theoretical Interpretation. Astrophys. J. 2017, 837, 158. [Google Scholar] [CrossRef]
- Chiappetta, F.; Laurenza, M.; Lepreti, F.; Consolini, G. Proton Energy Spectra of Energetic Storm Particle Events and Relation with Shock Parameters and Turbulence. Astrophys. J. 2021, 915, 8. [Google Scholar] [CrossRef]
- Perri, S.; Bykov, A.; Fahr, H.; Fichtner, H.; Giacalone, J. Recent Developments in Particle Acceleration at Shocks: Theory and Observations. Space Sci. Rev. 2022, 218, 26. [Google Scholar] [CrossRef]
- Fox, N.J.; Velli, M.C.; Bale, S.D.; Decker, R.; Driesman, A.; Howard, R.A.; Kasper, J.C.; Kinnison, J.; Kusterer, M.; Lario, D.; et al. The Solar Probe Plus Mission: Humanity’s First Visit to Our Star. Space Sci. Rev. 2016, 204, 7–48. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.; St. Cyr, O.C.; Zouganelis, I.; Gilbert, H.R.; Marsden, R.; Nieves-Chinchilla, T.; Antonucci, E.; Auchère, F.; Berghmans, D.; Horbury, T.S.; et al. The Solar Orbiter mission. Science overview. Astron. Astrophys. 2020, 642, A1. [Google Scholar] [CrossRef]
- Benkhoff, J.; Murakami, G.; Baumjohann, W.; Besse, S.; Bunce, E.; Casale, M.; Cremosese, G.; Glassmeier, K.H.; Hayakawa, H.; Heyner, D.; et al. BepiColombo—Mission Overview and Science Goals. Space Sci. Rev. 2021, 217, 90. [Google Scholar] [CrossRef]
- Borovsky, J.E. A Statistical Analysis of the Fluctuations in the Upstream and Downstream Plasmas of 109 Strong-Compression Interplanetary Shocks at 1 AU. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027518. [Google Scholar] [CrossRef]
- Pitňa, A.; Šafránková, J.; Němeček, Z.; Ďurovcová, T.; Kis, A. Turbulence Upstream and Downstream of Interplanetary Shocks. Front. Phys. 2021, 8, 626768. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D. The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén wave trains. Planet. Space Sci. 1987, 35, 405–412. [Google Scholar] [CrossRef]
- Telloni, D.; D’Amicis, R.; Bruno, R.; Perrone, D.; Sorriso-Valvo, L.; Raghav, A.N.; Choraghe, K. Alfvénicity-related Long Recovery Phases of Geomagnetic Storms: A Space Weather Perspective. Astrophys. J. 2021, 916, 64. [Google Scholar] [CrossRef]
- Napoletano, G.; Forte, R.; Del Moro, D.; Pietropaolo, E.; Giovannelli, L.; Berrilli, F. A probabilistic approach to the drag-based model. J. Space Weather Space Clim. 2018, 8, A11. [Google Scholar] [CrossRef] [Green Version]
- Del Moro, D.; Napoletano, G.; Forte, R.; Giovannelli, L.; Pietropaolo, E.; Berrilli, F. Forecasting the 2018 February 12th CME propagation with the P-DBM model: A fast warning procedure. Ann. Geophys. 2019, 62, GM456. [Google Scholar] [CrossRef]
- Napoletano, G.; Foldes, R.; Camporeale, E.; de Gasperis, G.; Giovannelli, L.; Paouris, E.; Pietropaolo, E.; Teunissen, J.; Tiwari, A.K.; Del Moro, D. Parameter Distributions for the Drag-Based Modeling of CME Propagation. Space Weather 2022, 20, e2021SW002925. [Google Scholar] [CrossRef]
- Hu, Q.; Sonnerup, B.U.O. Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J. Geophys. Res. Space Phys. 2002, 107, SSH 10-1–SSH 10-15. [Google Scholar] [CrossRef]
- Hu, Q. The Grad-Shafranov reconstruction in twenty years: 1996–2016. Sci. China Earth Sci. 2017, 60, 1466–1494. [Google Scholar] [CrossRef]
- Benella, S.; Laurenza, M.; Vainio, R.; Grimani, C.; Consolini, G.; Hu, Q.; Afanasiev, A. A New Method to Model Magnetic Cloud-driven Forbush Decreases: The 2016 August 2 Event. Astrophys. J. 2020, 901, 21. [Google Scholar] [CrossRef]
- Pulkkinen, T. Space Weather: Terrestrial Perspective. Living Rev. Sol. Phys. 2007, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Consolini, G.; De Michelis, P.; Tozzi, R. On the Earth’s magnetospheric dynamics: Nonequilibrium evolution and the fluctuation theorem. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- De Michelis, P.; Consolini, G.; Tozzi, R.; Marcucci, M.F. Observations of high-latitude geomagnetic field fluctuations during St. Patrick’s Day storm: Swarm and SuperDARN measurements. Earth Planets Space 2016, 68, 105. [Google Scholar] [CrossRef] [Green Version]
- Alberti, T.; Giannattasio, F.; De Michelis, P.; Consolini, G. Linear Versus Nonlinear Methods for Detecting Magnetospheric and Ionospheric Current Systems Patterns. Earth Space Sci. 2020, 7, e00559. [Google Scholar] [CrossRef] [Green Version]
- Santarelli, L.; De Michelis, P.; Consolini, G. Hints on the Multiscale Nature of Geomagnetic Field Fluctuations During Quiet and Disturbed Periods. J. Geophys. Res. (Space Phys.) 2021, 126, e28596. [Google Scholar] [CrossRef]
- Piersanti, M.; Del Moro, D.; Parmentier, A.; Martucci, M.; Palma, F.; Sotgiu, A.; Plainaki, C.; D’Angelo, G.; Berrilli, F.; Recchiuti, D.; et al. On the Magnetosphere-Ionosphere Coupling During the May 2021 Geomagnetic Storm. Space Weather 2022, 20, e2021SW003016. [Google Scholar] [CrossRef]
- Alberti, T.; Faranda, D.; Consolini, G.; De Michelis, P.; Donner, R.V.; Carbone, V. Concurrent Effects between Geomagnetic Storms and Magnetospheric Substorms. Universe 2022, 8, 226. [Google Scholar] [CrossRef]
- Marcucci, M.F.; Coco, I.; Ambrosino, D.; Amata, E.; Milan, S.E.; Bavassano Cattaneo, M.B.; Retinò, A. Extended SuperDARN and IMAGE observations for northward IMF: Evidence for dual lobe reconnection. J. Geophys. Res. (Space Phys.) 2008, 113, A02204. [Google Scholar] [CrossRef]
- Hasegawa, H.; Fujimoto, M.; Phan, T.D.; Rème, H.; Balogh, A.; Dunlop, M.W.; Hashimoto, C.; TanDokoro, R. Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 2004, 430, 755–758. [Google Scholar] [CrossRef]
- Liemohn, M.W. Introduction to special section on “Results of the National Science Foundation Geospace Environment Modeling Inner Magnetosphere/Storms Assessment Challenge”. J. Geophys. Res. (Space Phys.) 2006, 111, A11S01. [Google Scholar] [CrossRef]
- Thorne, R.M. Radiation belt dynamics: The importance of wave-particle interactions. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Eastwood, J.P.; Nakamura, R.; Turc, L.; Mejnertsen, L.; Hesse, M. The Scientific Foundations of Forecasting Magnetospheric Space Weather. Space Sci. Rev. 2017, 212, 1221–1252. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.S.; Kamide, Y.; Lakhina, G.S. Disturbances on geospace: The storm-substorm relationship. Geophys. Monogr. 2003, 142. [Google Scholar] [CrossRef]
- Raeder, J.; Larson, D.; Li, W.; Kepko, E.L.; Fuller-Rowell, T. OpenGGCM Simulations for the THEMIS Mission. Space Sci. Rev. 2008, 141, 535–555. [Google Scholar] [CrossRef]
- Paschmann, G.; Sonnerup, B.U.O.; Papamastorakis, I.; Sckopke, N.; Haerendel, G.; Bame, S.J.; Asbridge, J.R.; Gosling, J.T.; Russell, C.T.; Elphic, R.C. Plasma acceleration at the Earth’s magnetopause: Evidence for reconnection. Nature 1979, 282, 243–246. [Google Scholar] [CrossRef]
- Sonnerup, B.U.Ö.; Haaland, S.E.; Paschmann, G.; Denton, R.E. Quality Measure for the Walén Relation. J. Geophys. Res. (Space Phys.) 2018, 123, 9979–9990. [Google Scholar] [CrossRef]
- Tsyganenko, N.A.; Sitnov, M.I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res. Space Phys. 2005, 110, A03208. [Google Scholar] [CrossRef]
- Lichtenberger, J.; Clilverd, M.A.; Heilig, B.; Vellante, M.; Manninen, J.; Rodger, C.J.; Collier, A.B.; Jørgensen, A.M.; Reda, J.; Holzworth, R.H.; et al. The plasmasphere during a space weather event: First results from the PLASMON project. J. Space Weather Space Clim. 2013, 3, A23. [Google Scholar] [CrossRef] [Green Version]
- Del Corpo, A.; Vellante, M.; Heilig, B.; Pietropaolo, E.; Reda, J.; Lichtenberger, J. Observing the cold plasma in the Earth’s magnetosphere with the EMMA network. Ann. Geophys. 2019, 62, GM447. [Google Scholar] [CrossRef]
- Del Corpo, A.; Vellante, M.; Heilig, B.; Pietropaolo, E.; Reda, J.; Lichtenberger, J. An Empirical Model for the Dayside Magnetospheric Plasma Mass Density Derived From EMMA Magnetometer Network Observations. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027381. [Google Scholar] [CrossRef]
- Foldes, R.; Del Corpo, A.; Pietropaolo, E.; Vellante, M. Assessing Machine Learning Techniques for Identifying Field Line Resonance Frequencies From Cross-Phase Spectra. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029008. [Google Scholar] [CrossRef]
- De Michelis, P.; Pignalberi, A.; Consolini, G.; Coco, I.; Tozzi, R.; Pezzopane, M.; Giannattasio, F.; Balasis, G. On the 2015 St. Patrick’s Storm Turbulent State of the Ionosphere: Hints From the Swarm Mission. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027934. [Google Scholar] [CrossRef]
- Pignalberi, A.; Giannattasio, F.; Truhlik, V.; Coco, I.; Pezzopane, M.; Consolini, G.; De Michelis, P.; Tozzi, R. On the Electron Temperature in the Topside Ionosphere as Seen by Swarm Satellites, Incoherent Scatter Radars, and the International Reference Ionosphere Model. Remote Sens. 2021, 13, 4077. [Google Scholar] [CrossRef]
- Giannattasio, F.; De Michelis, P.; Pignalberi, A.; Coco, I.; Consolini, G.; Pezzopane, M.; Tozzi, R. Parallel Electrical Conductivity in the Topside Ionosphere Derived From Swarm Measurements. J. Geophys. Res. (Space Phys.) 2021, 126, e28452. [Google Scholar] [CrossRef]
- Giannattasio, F.; Pignalberi, A.; De Michelis, P.; Coco, I.; Consolini, G.; Pezzopane, M.; Tozzi, R. Dependence of Parallel Electrical Conductivity in the Topside Ionosphere on Solar and Geomagnetic Activity. J. Geophys. Res. (Space Phys.) 2021, 126, e29138. [Google Scholar] [CrossRef]
- Giannattasio, F.; Consolini, G.; Coco, I.; De Michelis, P.; Pezzopane, M.; Pignalberi, A.; Tozzi, R. Dissipation of field-aligned currents in the topside ionosphere. Sci. Rep. 2022, 12, 17202. [Google Scholar] [CrossRef]
- Baskaradas, J.; Bianchi, C.; Pezzopane, M.; Romano, V.; Umberto, S.; Scotto, C.; G, T.; Zuccheretti, E. New low power pulse compressed ionosonde at Gibilmanna Ionospheric Observatory. Ann. Geophys. 2005, 48. [Google Scholar] [CrossRef]
- Pezzopane, M.; Scotto, C. Software for the automatic scaling of critical frequency f0F2 and MUF(3000) F2 from ionograms appliedat the Ionospheric Observatory of Gibilmanna. Ann. Geophys. 2004, 47. [Google Scholar] [CrossRef]
- Pezzopane, M.; Zuccheretti, E.; Bianchi, C.; Scotto, C.; Zolesi, B.; Cabrera, M.A.; Ezquer, R.G. The new ionospheric station of Tucuman: First results. Ann. Geophys. 2007, 50. [Google Scholar] [CrossRef]
- Greenwald, R.A.; Baker, K.B.; Dudeney, J.R.; Pinnock, M.; Jones, T.B.; Thomas, E.C.; Villain, J.P.; Cerisier, J.C.; Senior, C.; Hanuise, C.; et al. DARN/SuperDARN. Space Sci. Rev. 1995, 71, 761–796. [Google Scholar] [CrossRef]
- Ruohoniemi, J.M.; Baker, K.B. Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations. J. Geophys. Res. Space Phys. 1998, 103, 20797–20811. [Google Scholar] [CrossRef]
- Borovsky, J.E.; Lavraud, B.; Kuznetsova, M.M. Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Milan, S.E.; Gosling, J.S.; Hubert, B. Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Friis-Christensen, E.; Lühr, H.; Hulot, G. SWARM: A constellation to study the Earth’s magnetic field. Earth Planets Space 2006, 58, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhang, X.; Yuan, S.; Wang, L.; Cao, J.; Huang, J.; Zhu, X.; Piergiorgio, P.; Dai, J. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Pi, X.; Mannucci, A.J.; Lindqwister, U.J.; Ho, C.M. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys. Res. Lett. 1997, 24, 2283–2286. [Google Scholar] [CrossRef]
- Xiong, C.; Stolle, C.; Lühr, H. The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Weather 2016, 14, 563–577. [Google Scholar] [CrossRef]
- Jin, Y.; Spicher, A.; Xiong, C.; Clausen, L.B.N.; Kervalishvili, G.; Stolle, C.; Miloch, W.J. Ionospheric Plasma Irregularities Characterized by the Swarm Satellites: Statistics at High Latitudes. J. Geophys. Res. Space Phys. 2019, 124, 1262–1282. [Google Scholar] [CrossRef]
- Pignalberi, A.; Coco, I.; Giannattasio, F.; Pezzopane, M.; De Michelis, P.; Consolini, G.; Tozzi, R. A New Ionospheric Index to Investigate Electron Temperature Small-Scale Variations in the Topside Ionosphere. Universe 2021, 7, 290. [Google Scholar] [CrossRef]
- Pignalberi, A. TITIPy: A Python tool for the calculation and mapping of topside ionosphere turbulence indices. Comput. Geosci. 2021, 148, 104675. [Google Scholar] [CrossRef]
- Piersanti, M.; Di Matteo, S.; Carter, B.A.; Currie, J.; D’Angelo, G. Geoelectric Field Evaluation During the September 2017 Geomagnetic Storm: MA.I.GIC. Model. Space Weather 2019, 17, 1241–1256. [Google Scholar] [CrossRef] [Green Version]
- Ivanovski, S.; Kartalev, M.; Dobreva, P.; Vatkova, G.; Chernogorova, T. Coupled Kelvin-Helmholtz and Tearing Mode Instabilities in the Magnetopause Layer. J. Theor. Appl. Mech. 2011, 41, 31–42. [Google Scholar]
- Massetti, S.; Orsini, S.; Milillo, A.; Mura, A. Modelling Mercury’s magnetosphere and plasma entry through the dayside magnetopause. Planet. Space Sci. 2007, 55, 1557–1568. [Google Scholar] [CrossRef]
- Kallio, E.; Janhunen, P. Solar wind and magnetospheric ion impact on Mercury’s surface. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Fatemi, S.; Poppe, A.R.; Barabash, S. Hybrid Simulations of Solar Wind Proton Precipitation to the Surface of Mercury. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027706. [Google Scholar] [CrossRef] [Green Version]
- Slavin, J.A.; DiBraccio, G.A.; Gershman, D.J.; Imber, S.M.; Poh, G.K.; Raines, J.M.; Zurbuchen, T.H.; Jia, X.; Baker, D.N.; Glassmeier, K.H.; et al. MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. J. Geophys. Res. Space Phys. 2014, 119, 8087–8116. [Google Scholar] [CrossRef] [Green Version]
- Mura, A.; Wurz, P.; Lichtenegger, H.I.; Schleicher, H.; Lammer, H.; Delcourt, D.; Milillo, A.; Orsini, S.; Massetti, S.; Khodachenko, M.L. The sodium exosphere of Mercury: Comparison between observations during Mercury’s transit and model results. Icarus 2009, 200, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, F.; Doressoundiram, A.; Schneider, N.; Massetti, S.; Wedlund, M.; López Ariste, A.; Barbieri, C.; Mangano, V.; Cremonese, G. Short-term variations of Mercury’s Na exosphere observed with very high spectral resolution. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, M.S. Solar Modulation of Cosmic Rays. Living Rev. Sol. Phys. 2013, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Kudela, K.; Storini, M.; Hofer, M.Y.; Belov, A. Cosmic Rays in Relation to Space Weather. Space Sci. Rev. 2000, 93, 153–174. [Google Scholar] [CrossRef]
- Vecchio, A.; Laurenza, M.; Carbone, V.; Storini, M. Quasi-Biennial Modulation of Solar Neutrino Flux and Solar and Galactic Cosmic Rays By Solar Cyclic Activity. Astrophys. J. 2009, 709, L1–L5. [Google Scholar] [CrossRef]
- Tomassetti, N. Solar and nuclear physics uncertainties in cosmic-ray propagation. Phys. Rev. D 2017, 96, 103005. [Google Scholar] [CrossRef] [Green Version]
- Laurenza, M.; Vecchio, A.; Storini, M.; Carbone, V. Drift Effects on the Galactic Cosmic Ray Modulation. Astrophys. J. 2014, 781, 71. [Google Scholar] [CrossRef]
- Laurenza, M.; Alberti, T.; Marcucci, M.F.; Consolini, G.; Jacquey, C.; Molendi, S.; Macculi, C.; Lotti, S. Estimation of the Particle Radiation Environment at the L1 Point and in Near-Earth Space. Astrophys. J. 2019, 873, 112. [Google Scholar] [CrossRef]
- Armano, M.; Audley, H.; Baird, J.; Bassan, M.; Benella, S.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Cavalleri, A.; Cesarini, A.; et al. Characteristics and Energy Dependence of Recurrent Galactic Cosmic-Ray Flux Depressions and of a Forbush Decrease with LISA Pathfinder. Astrophys. J. 2018, 854, 113. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Cavasonza, L.A.; Ambrosi, G.; Arruda, L.; Attig, N.; Barao, F.; Barrin, L.; Bartoloni, A.; Başeğmez-du Pree, S.; Battiston, R.; et al. Periodicities in the Daily Proton Fluxes from 2011 to 2019 Measured by the Alpha Magnetic Spectrometer on the International Space Station from 1 to 100 GV. Phys. Rev. Lett. 2021, 127, 271102. [Google Scholar] [CrossRef]
- Berrilli, F.; Casolino, M.; Del Moro, D.; Di Fino, L.; Larosa, M.; Narici, L.; Piazzesi, R.; Picozza, P.; Scardigli, S.; Sparvoli, R.; et al. The relativistic solar particle event of May 17th, 2012 observed on board the International Space Station. J. Space Weather Space Clim. 2014, 4, A16. [Google Scholar] [CrossRef] [Green Version]
- Di Fino, L.; Zaconte, V.; Stangalini, M.; Sparvoli, R.; Picozza, P.; Piazzesi, R.; Narici, L.; Larosa, M.; Del Moro, D.; Casolino, M.; et al. Solar particle event detected by ALTEA on board the International Space Station. The March 7th, 2012 X5.4 flare. J. Space Weather Space Clim. 2014, 4, A19. [Google Scholar] [CrossRef] [Green Version]
- Buzulukova, N. Extreme Events in Geospace: Origins, Predictability, and Consequences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Piersanti, M.; Carter, B. Chapter 10—Geomagnetically induced currents. In The Dynamical Ionosphere; Materassi, M., Forte, B., Coster, A.J., Skone, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 121–134. [Google Scholar] [CrossRef]
- Tozzi, R.; De Michelis, P.; Coco, I.; Giannattasio, F. A Preliminary Risk Assessment of Geomagnetically Induced Currents over the Italian Territory. Space Weather 2019, 17, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Pezzopane, M.; Pignalberi, A.; Coco, I.; Consolini, G.; De Michelis, P.; Giannattasio, F.; Marcucci, M.F.; Tozzi, R. Occurrence of GPS Loss of Lock Based on a Swarm Half-Solar Cycle Dataset and Its Relation to the Background Ionosphere. Remote Sens. 2021, 13, 2209. [Google Scholar] [CrossRef]
- Marshall, R.A.; Waters, C.L.; Sciffer, M.D. Spectral analysis of pipe-to-soil potentials with variations of the Earth’s magnetic field in the Australian region. Space Weather 2010, 8. [Google Scholar] [CrossRef]
- Marshall, R.A.; Smith, E.A.; Francis, M.J.; Waters, C.L.; Sciffer, M.D. A preliminary risk assessment of the Australian region power network to space weather. Space Weather 2011, 9. [Google Scholar] [CrossRef] [Green Version]
- Tozzi, R.; Coco, I.; De Michelis, P.; Giannattasio, F. Latitudinal dependence of geomagnetically induced currents during geomagnetic storms. Ann. Geophys. 2019, 64, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kahler, S.W. The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. 1982, 87, 3439–3448. [Google Scholar] [CrossRef]
- Gopalswamy, N.; Yashiro, S.; Liu, Y.; Michalek, G.; Vourlidas, A.; Kaiser, M.L.; Howard, R.A. Coronal mass ejections and other extreme characteristics of the 2003 October-November solar eruptions. J. Geophys. Res. (Space Phys.) 2005, 110, A09S15. [Google Scholar] [CrossRef]
- Wu, C.C.; Liou, K.; Lepping, R.P.; Hutting, L. The 04—10 September 2017 Sun-Earth Connection Events: Solar Flares, Coronal Mass Ejections/Magnetic Clouds, and Geomagnetic Storms. Sol. Phys. 2019, 294, 110. [Google Scholar] [CrossRef]
- Piersanti, M.; De Michelis, P.; Del Moro, D.; Tozzi, R.; Pezzopane, M.; Consolini, G.; Marcucci, M.F.; Laurenza, M.; Di Matteo, S.; Pignalberi, A.; et al. From the Sun to Earth: Effects of the 25 August 2018 geomagnetic storm. Ann. Geophys. 2020, 38, 703–724. [Google Scholar] [CrossRef]
- Xu, S.; Curry, S.M.; Mitchell, D.L.; Luhmann, J.G.; Lillis, R.J.; Dong, C. Magnetic Topology Response to the 2003 Halloween ICME Event at Mars. J. Geophys. Res. (Space Phys.) 2019, 124, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Cramer, A.G.; Withers, P.; Elrod, M.K.; Benna, M.; Mahaffy, P.R. Effects of the 10 September 2017 Solar Flare on the Density and Composition of the Thermosphere of Mars. J. Geophys. Res. (Space Phys.) 2020, 125, e28518. [Google Scholar] [CrossRef]
- Kollhoff, A.; Kouloumvakos, A.; Lario, D.; Dresing, N.; Gómez-Herrero, R.; Rodríguez-García, L.; Malandraki, O.E.; Richardson, I.G.; Posner, A.; Klein, K.L.; et al. The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29. Astron. Astrophys. 2021, 656, A20. [Google Scholar] [CrossRef]
- Siciliano, F.; Consolini, G.; Tozzi, R.; Gentili, M.; Giannattasio, F.; De Michelis, P. Forecasting SYM-H Index: A Comparison Between Long Short-Term Memory and Convolutional Neural Networks. Space Weather 2021, 19, e2020SW002589. [Google Scholar] [CrossRef]
- Mumford, S.; Freij, N.; Christe, S.; Ireland, J.; Mayer, F.; Hughitt, V.; Shih, A.; Ryan, D.; Liedtke, S.; Pérez-Suárez, D.; et al. SunPy: A Python package for Solar Physics. J. Open Source Softw. 2020, 5, 1832. [Google Scholar] [CrossRef]
- Price-Whelan, A.M.; Lim, P.L.; Earl, N.; Starkman, N.; Bradley, L.; Shupe, D.L.; Patil, A.A.; Corrales, L.; Brasseur, C.; Nöthe, M.; et al. The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5. 0) of the Core Package. Astrophys. J. 2022, 935, 167. [Google Scholar]
- Forte, R.; Berrilli, F.; Calchetti, D.; Del Moro, D.; Fleck, B.; Giebink, C.; Giebink, W.; Giovannelli, L.; Jefferies, S.M.; Knox, A.; et al. Data reduction pipeline for MOF-based synoptic telescopes. J. Space Weather Space Clim. 2020, 10, 63. [Google Scholar] [CrossRef]
- Giovannelli, L.; Berrilli, F.; Calchetti, D.; Del Moro, D.; Viavattene, G.; Pietropaolo, E.; Iarlori, M.; Rizi, V.; Jefferies, S.M.; Oliviero, M.; et al. The Tor Vergata Synoptic Solar Telescope (TSST): A robotic, compact facility for solar full disk imaging. J. Space Weather Space Clim. 2020, 10, 58. [Google Scholar] [CrossRef]
- Shen, X.; Zong, Q.G.; Zhang, X. Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results. Earth Planet. Phys. 2018, 2, 439–443. [Google Scholar] [CrossRef]
- Mangano, V.; Massetti, S.; Milillo, A.; Plainaki, C.; Orsini, S.; Rispoli, R.; Leblanc, F. THEMIS Na exosphere observations of Mercury and their correlation with in-situ magnetic field measurements by MESSENGER. Planet. Space Sci. 2015, 115, 102–109. [Google Scholar] [CrossRef]
- Leblanc, F.; Doressoundiram, A.; Schneider, N.; Mangano, V.; López Ariste, A.; Lemen, C.; Gelly, B.; Barbieri, C.; Cremonese, G. High latitude peaks in Mercury’s sodium exosphere: Spectral signature using THEMIS solar telescope. Geophys. Res. Lett. 2008, 35, L18204. [Google Scholar] [CrossRef] [Green Version]
- Piersanti, M.; Villante, U. On the discrimination between magnetospheric and ionospheric contributions on the ground manifestation of sudden impulses. J. Geophys. Res. (Space Phys.) 2016, 121, 6674–6691. [Google Scholar] [CrossRef]
- Mura, A.; Milillo, A.; Orsini, S.; Massetti, S. Numerical and analytical model of Mercury’s exosphere: Dependence on surface and external conditions. Planet. Space Sci. 2007, 55, 1569–1583. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurenza, M.; Del Moro, D.; Alberti, T.; Battiston, R.; Benella, S.; Benvenuto, F.; Berrilli, F.; Bertello, I.; Bertucci, B.; Biasiotti, L.; et al. The CAESAR Project for the ASI Space Weather Infrastructure. Remote Sens. 2023, 15, 346. https://doi.org/10.3390/rs15020346
Laurenza M, Del Moro D, Alberti T, Battiston R, Benella S, Benvenuto F, Berrilli F, Bertello I, Bertucci B, Biasiotti L, et al. The CAESAR Project for the ASI Space Weather Infrastructure. Remote Sensing. 2023; 15(2):346. https://doi.org/10.3390/rs15020346
Chicago/Turabian StyleLaurenza, M., D. Del Moro, T. Alberti, R. Battiston, S. Benella, F. Benvenuto, F. Berrilli, I. Bertello, B. Bertucci, L. Biasiotti, and et al. 2023. "The CAESAR Project for the ASI Space Weather Infrastructure" Remote Sensing 15, no. 2: 346. https://doi.org/10.3390/rs15020346
APA StyleLaurenza, M., Del Moro, D., Alberti, T., Battiston, R., Benella, S., Benvenuto, F., Berrilli, F., Bertello, I., Bertucci, B., Biasiotti, L., Campi, C., Carbone, V., Casolino, M., Cecchi Pestellini, C., Chiappetta, F., Coco, I., Colombo, S., Consolini, G., D’Amicis, R., ... Zuccon, P. (2023). The CAESAR Project for the ASI Space Weather Infrastructure. Remote Sensing, 15(2), 346. https://doi.org/10.3390/rs15020346