Dim Moving Multi-Target Enhancement with Strong Robustness for False Enhancement
Abstract
:1. Introduction
2. Analysis of Dim Moving Infrared Target Images
2.1. Characteristics of the Target
2.2. Characteristics of the Background and Noise
3. Method
3.1. Multi-Target Localization
3.1.1. Spatio-Temporal Filtering and Blind Pixels Suppression
3.1.2. Multi-Target Judgement and Rough Localization
3.2. Motion Detection by Optical Flow
3.2.1. Pyramid Lucas–Kanade (L-K) Optical Flow
- (1)
- The optical flow on the top layer of the image is calculated after the pyramid is built.
- (2)
- The displacement of the pixel on the current layer () is estimated initially by the calculation results of the optical flow on the upper layer (). Then, the optical flow on the current layer is calculated, which would be passed to the next layer ().
- (3)
- It is iterated until layer () is obtained. The resulting optical flow is the sum of all the layers.
3.2.2. Motion Detection by Pyramid L-K Optical Flow
3.3. Target Enhancement by 3D Convolution
3.3.1. Three-Dimensional Convolution
3.3.2. Target Enhancement by 3D Convolution
4. Experiments
4.1. Experimental Setup
4.1.1. Evaluation Metrics and Test Images
4.1.2. The Analysis of Parameters
4.2. Validation of the Algorithm
4.2.1. The Influence of Missed and False Judgement on the Algorithm
4.2.2. The Results of the Algorithm
4.3. Comparison
4.4. Experiments on Real Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Prentice Hall International: Hoboken, NJ, USA, 2002; Volume 28, pp. 484–486. [Google Scholar]
- Kweon, Z. Edge directional 2D LMS filter for infrared small target detection. Infrared Phys. Technol. 2012, 55, 137–145. [Google Scholar]
- Seyed, M.F.; Reza, M.M.; Mahdi, N. Flying small target detection in IR images based on adaptive toggle operator. IET Comp. Vis. 2018, 12, 527–534. [Google Scholar]
- Jiang, D.; Huo, L.; Lv, Z.; Song, H.; Qin, W. A Joint Multi-Criteria Utility-Based Network Selection Approach for Vehicle-to-Infrastructure Networking. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3305–3319. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, F. Hit-or-miss transform based infrared dim small target enhancement. Opt. Laser Technol. 2011, 43, 1084–1090. [Google Scholar] [CrossRef]
- Bai, X. Morphological operator for infrared dim small target enhancement using dilation and erosion through structuring element construction. Opt. Int. J. Light Electron Opt. 2013, 124, 6163–6166. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, F.; Xue, B. Infrared dim small target enhancement using toggle contrast operator. Infrared Phys. Technol. 2012, 55, 177–182. [Google Scholar] [CrossRef]
- Zhou, J.; Lv, H.; Zhou, F. Infrared small target enhancement by using sequential top-hat filters. Int. Soc. Opt. Photonics 2014, 9301, 417–421. [Google Scholar]
- Guofeng, Z.; Hamdulla, A. Adaptive Morphological Contrast Enhancement Based on Quantum Genetic Algorithm for Point Target Detection. Mob. Netw. Appl. 2020, 2, 638–648. [Google Scholar] [CrossRef]
- Qi, S.; Ma, J.; Li, H.; Zhang, S.; Tian, J. Infrared small target enhancement via phase spectrum of Quaternion Fourier Transform. Infrared Phys. Technol. 2014, 62, 50–58. [Google Scholar] [CrossRef]
- Tan, J.H.; Pan, A.C.; Liang, J.; Huang, Y.H.; Fan, X.Y.; Pan, J.J. A new algorithm of infrared image enhancement based on rough sets and curvelet transform. In Proceedings of the 2009 International Conference on Wavelet Analysis and Pattern Recognition, Baoding, China, 12–15 July 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Zhao, J.; Qu, S. The Fuzzy Nonlinear Enhancement Algorithm of Infrared Image Based on Curvelet Transform. Procedia Eng. 2011, 15, 3754–3758. [Google Scholar] [CrossRef]
- Qiang, Z.; Pan, W.J.; Zhu, X.P.; Xuan, W. Enhancement Method for Infrared Dim-Small Target Images Based on Rough Set. In Proceeding of 2017 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China, 21–23 July 2017; IEEE Computer Society: Washington, DC, USA, 2017. [Google Scholar]
- Yong, Y.; Wang, B.; Zhang, W.; Peng, Z. Low-contrast small target image enhancement based on rough set theory. Proc. SPIE 2007, 6833, 639–644. [Google Scholar]
- Qi, S.; Ming, D.; Ma, J.; Sun, X.; Tian, J. Robust method for infrared small-target detection based on Boolean map visual theory. App. Opt. 2014, 53, 3929–3940. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Xin, Y. Effective and robust infrared small target detection with the fusion of poly directional first order derivative images under facet model. Infrared Phys. Technol. 2015, 69, 136–144. [Google Scholar]
- Wei, Y.; You, X.; Li, H. Multiscale patch-based contrast measure for small infrared target detection. Patt. Recog. 2016, 58, 216–226. [Google Scholar] [CrossRef]
- Deng, H.; Sun, X.; Liu, M.; Ye, C.; Zhou, X. Infrared small-target detection using multiscale gray difference weighted image entropy. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 60–72. [Google Scholar] [CrossRef]
- Ma, T.; Shi, Z.; Jian, Y.; Liu, Y.; Xu, B.; Zhang, C. Rectilinear-motion space inversion-based detection approach for infrared dim air targets with variable velocities. Opt. Eng. 2016, 55, 33102. [Google Scholar] [CrossRef]
- Ma, T.; Wang, J.; Yang, Z.; Ku, Y.; Ren, X.; Zhang, C. Infrared small target energy distribution modeling for 2D subpixel motion and target energy compensation detection. Opt. Eng. 2022, 61, 013104. [Google Scholar] [CrossRef]
- Reed, I.S.; Gagliardi, R.M. A recursive moving-target-indication algorithm for optical image sequences. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 434–440. [Google Scholar] [CrossRef]
- Li, M.; Zhang, T.; Yang, W.; Sun, X. Moving weak point target detection and estimation with three-dimensional double directional filter in IR cluttered background. Opt. Eng. 2005, 44, 107007. [Google Scholar] [CrossRef]
- Zhang, T.; Li, M.; Zuo, Z.; Yang, W.; Sun, X. Moving dim point target detection with three-dimensional wide-to-exact search directional filtering. Pattern Recognit. Lett. 2007, 28, 246–253. [Google Scholar] [CrossRef]
- Ren, X.; Wang, J.; Ma, T.; Bai, K.; Ge, M.; Wang, Y. Infrared dim and small target detection based on three-dimensional collaborative filtering and spatial inversion modeling. Infrared Phys. Technol. 2019, 101, 13–24. [Google Scholar] [CrossRef]
- Tonissen, S.M.; Evans, R.J. Performance of dynamic programming techniques for Track-Before-Detect. IEEE Trans. Aerosp. Electron. Syst 1996, 32, 1440–1451. [Google Scholar] [CrossRef]
- Arnold, J.; Shaw, S.W.; Pasternack, H. Efficient target tracking using dynamic programming. IEEE Trans. Aerosp. Electron. Syst. 2002, 29, 44–56. [Google Scholar] [CrossRef]
- Orlando, D.; Ricci, G.; Bar-Shalom, Y. Track-Before-Detect Algorithms for Targets with Kinematic Constraints. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1837–1849. [Google Scholar] [CrossRef]
- Sun, X.; Liu, X.; Tang, Z.; Long, G.; Yu, Q. Real-time visual enhancement for infrared small dim targets in video. Infrared Phys. Technol. 2017, 83, 217–226. [Google Scholar] [CrossRef]
- Guo, Q.; Li, Z.; Song, W.; Fu, W. Parallel Computing Based Dynamic Programming Algorithm of Track-before-Detect. Symmetry 2018, 11, 29. [Google Scholar] [CrossRef]
- Li, Y.; Wei, P.; Gao, L.; Sun, W.; Zhang, H.; Li, G. Micro-Doppler Aided Track-Before-Detect for UAV Detection. In Proceedings of the IGARSS 2019, 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9086–9089. [Google Scholar]
- Wei, H.; Tan, Y.; Jin, L. Robust Infrared Small Target Detection via Temporal Low-Rank and Sparse Representation. In Proceedings of 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), Beijing, China, 8–10 July 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Li, J.; Li, S.J.; Zhao, Y.J.; Ma, J.N.; Huang, H. Background Suppression for Infrared Dim and Small Target Detection Using Local Gradient Weighted Filtering. In Proceedings of the International Conference on Electrical Engineering and Automation, Hong Kong, China, 24–26 June 2016. [Google Scholar]
- Hong, Z.; Lei, Z.; Ding, Y.; Chen, H. Infrared small target detection based on local intensity and gradient properties. Infrared Phys. Technol. 2017, 89, 88–96. [Google Scholar]
- Ma, T.; Shi, Z.; Yin, J.; Baoshu, X.; Yunpeng, L. Dim air target detection based on radiation accumulation and space inversion. Infrared Phys. Technol. 2015, 44, 3500–3506. [Google Scholar]
- Yang, T.; Zhou, F.; Xing, M. A Method for Calculating the Energy Concentration Degree of Point Target Detection System. Spacecr. Recovery Remote Sens. 2017, 38, 41–47. [Google Scholar] [CrossRef]
- Jia, L.J. Research on Key Technologies of On-satellite Processing for Infrared Dim Small Target; University of Chinese Academy of Sciences: Beijing, China, 2022. [Google Scholar]
- Pan, H.B.; Song, G.H.; Xie, L.J.; Zhao, Y. Detection method for small and dim targets from a time series of images observed by a space-based optical detection system. Opt. Rev. 2014, 21, 292–297. [Google Scholar] [CrossRef]
- Li, H.; Chen, Q. The Technique of the Multi-frame Image Accumulation and Equilibration with Infrared Thermal Imaging System. Las. Infrared 2005, 35, 978–990. [Google Scholar]
- Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 1997. [Google Scholar]
- Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning Spatiotemporal Features with 3D Convolutional Networks; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Bai, X.; Zhou, F.; Jin, T.; Xie, Y. Infrared small target detection and tracking under the conditions of dim target intensity and clutter background. In Proceedings of the MIPPR 2007: Automatic Target Recognition and Image Analysis and Multispectral Image Acquisition; International Society for Optics and Photonics: Washington, DC, USA, 2007. [Google Scholar]
- Chen, Q. Dynamic Inter-frame Filtering in IR Image Sequences. J. Nanjing Univ. Sci. Technol. 2003, 27, 653–656. [Google Scholar]
- Wang, X.; Wang, C.; Zhang, Y. Research on SNR of Point Target Image. Electron. Opt. Control. 2010, 17, 18–21. [Google Scholar]
- Xiong, F.; Zhou, J.; Qian, Y. Material Based Object Tracking in Hyperspectral Videos. IEEE Trans. Image Process. 2020, 29, 3719–3733. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, M.; Shi, S.; Chen, J. Deep Constrained Energy Minimization for Hyperspectral Target Detection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 8049–8063. [Google Scholar] [CrossRef]
Image Size | Number of Frames | SNR | Number of Targets | |
---|---|---|---|---|
Seq.1 | 50 | 4.39 | 5 | |
Seq.2 | 50 | 3.13 | 5 | |
Seq.3 | 50 | 2.37 | 5 | |
Seq.4 | 50 | 3.07 | 10 | |
Seq.5 | 100 | 3.53 | 5 | |
Seq.6 | 100 | 2.67 | 5 | |
Seq.7 | 100 | 1.57 | 5 | |
Seq.8 | 100 | 2.96 | 10 |
Number | Recall | Precision | SNRG | Remark |
---|---|---|---|---|
1 | 1 | 45% | 2.11 | |
2 | 1 | 71% | 2.13 | |
3 | 90% | 71% | 1.77 | |
4 | 80% | 1 | 1.62 | |
5 | 70% | 1 | 1.42 |
Recall | Precision | SNRG | |
---|---|---|---|
Seq.1 | 1 | 1 | 2.01 |
Seq.2 | 1 | 1 | 2.64 |
Seq.3 | 1 | 56% | 2.37 |
Seq.4 | 1 | 83% | 1.83 |
Seq.5 | 1 | 1 | 2.31 |
Seq.6 | 1 | 42% | 2.49 |
Seq.7 | 80% | 45% | 2.92 |
Seq.8 | 1 | 83% | 2.20 |
Size | Velocity (pixel/Frame) | SNR_in | SNRG | |
---|---|---|---|---|
Target1 | 1.3 | 3.85 | 1.72 | |
Target2 | 0.5 | 2.82 | 1.91 | |
Target3 | 1.1 | 3.66 | 1.56 | |
Target4 | 0.9 | 2.53 | 2.38 | |
Target5 | 0.7 | 3.36 | 1.43 | |
Target6 | 1.2 | 2.96 | 2.02 | |
Target7 | 1 | 3.36 | 1.63 | |
Target8 | 0.8 | 1.53 | 4.11 | |
Target9 | 1.5 | 2.54 | 1.90 | |
Target10 | 0.6 | 2.99 | 1.99 | |
Image | --- | 2.97 | 2.13 |
Method | Seq.1 | Seq.2 | Seq.3 | Seq.4 |
---|---|---|---|---|
Improved top-hat | 1.17 | 1.08 | 1.20 | 1.07 |
Dynamic inter-frame filtering | 1.47 | 1.24 | 1.48 | 1.36 |
3DCFSI-based method | 1.59 | 1.38 | 1.62 | 1.38 |
ECA method | 1.68 | 1.31 | 1.66 | 1.55 |
Proposed algorithm | 2.23 | 1.72 | 1.72 | 1.74 |
Image Size | Number of Frames | Number of Stars | Recall | Precision | SNRG | |
---|---|---|---|---|---|---|
Seq.9 | 200 | 2 | 1 | 1 | 2.09 | |
Seq.10 | 200 | 3 | 1 | 1 | 2.62 | |
Seq.11 | 200 | 3 | 1 | 1 | 2.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, X.; Rao, P.; Jia, L. Dim Moving Multi-Target Enhancement with Strong Robustness for False Enhancement. Remote Sens. 2023, 15, 4892. https://doi.org/10.3390/rs15194892
Zhang Y, Chen X, Rao P, Jia L. Dim Moving Multi-Target Enhancement with Strong Robustness for False Enhancement. Remote Sensing. 2023; 15(19):4892. https://doi.org/10.3390/rs15194892
Chicago/Turabian StyleZhang, Yuke, Xin Chen, Peng Rao, and Liangjie Jia. 2023. "Dim Moving Multi-Target Enhancement with Strong Robustness for False Enhancement" Remote Sensing 15, no. 19: 4892. https://doi.org/10.3390/rs15194892
APA StyleZhang, Y., Chen, X., Rao, P., & Jia, L. (2023). Dim Moving Multi-Target Enhancement with Strong Robustness for False Enhancement. Remote Sensing, 15(19), 4892. https://doi.org/10.3390/rs15194892