A GAN-Based Augmentation Scheme for SAR Deceptive Jamming Templates with Shadows
Abstract
:1. Introduction
2. Materials and Scheme
2.1. Scheme Overview
2.2. Characteristics of the Input Template
2.3. Specific Description of the Scheme
2.3.1. Generator Structure
2.3.2. Discriminator Structure
2.3.3. Loss Function
3. Results
3.1. Experimental Description
3.2. Experimental Result
3.3. Effectiveness Analysis of the Scheme
3.3.1. Quantitative Analysis of the Image Quality
Image | ENL | AG | MSD | GSSIM | CC |
---|---|---|---|---|---|
Figure 10a (the original image) | 3.0648 | 4.3137 | 0.1200 | — | — |
Figure 10b (the first sample) | 2.8589 | 4.1149 | 0.1167 | 0.8562 | 0.9060 |
Figure 10c (the second sample) | 2.4291 | 4.3661 | 0.1206 | 0.9117 | 0.9543 |
Figure 10d (the third sample) | 2.3734 | 3.9767 | 0.1166 | 0.8200 | 0.9036 |
Average of the samples | 2.5538 | 4.1526 | 0.1180 | 0.8626 | 0.9213 |
Similarity | 0.8333 | 0.9627 | 0.9833 | 0.8626 | 0.9213 |
3.3.2. Comparison with the SinGAN Scheme
Image | ENL | AG | MSD | GSSIM | CC |
---|---|---|---|---|---|
Figure 14a (the original image) | 3.0648 | 4.3137 | 0.1200 | — | — |
Figure 14b (the first sample) | 0.5175 | 2.4920 | 0.1198 | 0.3569 | 0.2734 |
Figure 14c (the second sample) | 0.6091 | 2.3711 | 0.1206 | 0.4121 | 0.1214 |
Figure 14d (the third sample) | 0.8786 | 2.6636 | 0.1300 | 0.3341 | 0.0686 |
Average of the samples | 0.6684 | 2.5089 | 0.1235 | 0.3677 | 0.1545 |
Similarity | 0.2181 | 0.5816 | 0.9717 | 0.3677 | 0.1545 |
3.3.3. Supplementary Experiments
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, W.M. Synthetic Aperture Radar. IEEE Trans. Aerosp. Electron. Syst. 1967, AES-3, 217–229. [Google Scholar] [CrossRef]
- Doerry, A.W.; Dickey, F.M. Synthetic aperture radar. Opt. Photonics News. 2004, 15, 28–33. [Google Scholar] [CrossRef]
- Sun, Z.; Leng, X.; Lei, Y.; Xiong, B.; Ji, K.; Kuang, G. BiFA-YOLO: A Novel YOLO-Based Method for Arbitrary-Oriented Ship Detection in High-Resolution SAR Images. Remote Sens. 2021, 13, 4209. [Google Scholar] [CrossRef]
- Qin, J.; Liu, Z.; Ran, L.; Xie, R.; Tang, J.; Zhu, H. An SAR Image Automatic Target Recognition Method Based on the Scattering Parameter Gaussian Mixture Model. Remote Sens. 2023, 15, 3800. [Google Scholar] [CrossRef]
- Pei, J.; Huo, W.; Wang, C.; Huang, Y.; Zhang, Y.; Wu, J.; Yang, J. Multiview deep feature learning network for SAR automatic target recognition. Remote Sens. 2021, 13, 1455. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, B.; Tao, M.; Bai, X.; Chen, B.; Sun, G. A large scene deceptive jamming method for space-borne SAR. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4486–4495. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, H.; Tang, Y.; Zhang, C. Research on deceptive jamming technologies against SAR. In Proceedings of the 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 26–29 October 2009; IEEE: Piscataway, NJ, USA; pp. 521–525. [Google Scholar]
- Wang, H.; Zhang, S.; Wang, W.-Q.; Huang, B.; Zheng, Z.; Lu, Z. Multi-scene deception jamming on SAR imaging with FDA antenna. IEEE Access 2019, 8, 7058–7069. [Google Scholar] [CrossRef]
- Sun, Q.; Shu, T.; Yu, K.-B.; Yu, W. Efficient deceptive jamming method of static and moving targets against SAR. IEEE Sens. J. 2018, 18, 3610–3618. [Google Scholar] [CrossRef]
- Tian, T.T.; Zhou, F.; Bai, X.; Zhang, Z.; Zhao, B.; Fan, W. A partitioned deceptive jamming method against TOPSAR. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 1538–1552. [Google Scholar] [CrossRef]
- Zhao, B.; Huang, L.; Li, J.; Liu, M.; Wang, J. Deceptive SAR jamming based on 1-bit sampling and time-varying thresholds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 939–950. [Google Scholar] [CrossRef]
- Zhao, B.; Huang, L.; Li, J.; Zhang, P. Target reconstruction from deceptively jammed single-channel SAR. IEEE Trans. Geosci. Remote Sens. 2017, 56, 152–167. [Google Scholar] [CrossRef]
- Vlahakis, V.; Ioannidis, M.; Karigiannis, J.; Tsotros, M.; Gounaris, M.; Stricker, D.; Gleue, T.; Daehne, P.; Almeida, L. Archeoguide: An augmented reality guide for archaeological sites. IEEE Comput. Graph. Appl. 2002, 22, 52–60. [Google Scholar] [CrossRef]
- Wenzel, M. Generative Adversarial Networks and Other Generative Models. Machine Learning for Brain Disorders; Springer: New York, NY, USA, 2012; pp. 139–192. [Google Scholar]
- Shaham, T.R.; Dekel, T.; Michaeli, T. Singan: Learning a generative model from a single natural image. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4570–4580. [Google Scholar]
- Fan, W.; Zhou, F.; Zhang, Z.; Bai, X.; Tian, T. Deceptive jamming template synthesis for SAR based on generative adversarial nets. Signal Process. 2020, 172, 107528. [Google Scholar] [CrossRef]
- Goodman, J.W. Some fundamental properties of speckle. JOSA 1976, 66, 1145–1150. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R.; De Grandi, G. Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2363–2373. [Google Scholar]
- Raney, R.K.; Wessels, G.J. Spatial considerations in SAR speckle consideration. IEEE Trans. Geosci. Remote Sens. 1988, 26, 666–672. [Google Scholar] [CrossRef]
- Mullissa, A.G.; Marcos, D.; Tuia, D.; Herold, M.; Reiche, J. DeSpeckNet: Generalizing deep learning-based SAR image despeckling. IEEE Trans. Geosci. Remote Sens. 2020, 60, 1–15. [Google Scholar] [CrossRef]
- Lee, J.S.; Jurkevich, L.; Dewaele, P.; Wambacq, P.; Oosterlinck, A. Speckle filtering of synthetic aperture radar images: A review. Remote Sens. Rev. 1994, 8, 313–340. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, X.; Shi, J.; Wei, S.; Yu, L. SAR deception jamming target recognition based on the shadow feature. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos Island, Greece, 28 August–2 September 2017; IEEE: Piscataway, NJ, USA; pp. 2491–2495. [Google Scholar]
- Papson, S.; Narayanan, R.M. Classification via the shadow region in SAR imagery. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 969–980. [Google Scholar] [CrossRef]
- Cui, J.; Gudnason, J.; Brookes, M. Radar shadow and superresolution features for automatic recognition of MSTAR targets. In Proceedings of the International Radar Conference, Arlington, VA, USA, 9–12 May 2005; IEEE: Piscataway, NJ, USA; pp. 534–539. [Google Scholar]
- Nebauer, C. Evaluation of convolutional neural networks for visual recognition. IEEE Trans. Neural Netw. 1998, 9, 685–696. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, D.; Zhang, Z.; Lin, S.; Dai, J. An empirical study of spatial attention mechanisms in deep networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6688–6697. [Google Scholar]
- Chun, M.M.; Jiang, Y. Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cogn. Psychol. 1998, 36, 28–71. [Google Scholar] [CrossRef]
- Hoffman, J.E.; Subramaniam, B. The role of visual attention in saccadic eye movements. Percept. Psychophys. 1995, 57, 787–795. [Google Scholar] [CrossRef]
- Deubel, H.; Schneider, W.X. Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vis. Res. 1996, 36, 1827–1837. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481. [Google Scholar]
- Wang, Y.; Yan, X.; Guan, D.; Wei, M.; Chen, Y.; Zhang, X.P.; Li, J. Cycle-snspgan: Towards real-world image dehazing via cycle spectral normalized soft likelihood estimation patch gan. IEEE Trans. Intell. Transp. Syst. 2022, 23, 20368–20382. [Google Scholar] [CrossRef]
- Leihong, Z.; Zhai, Y.; Xu, R.; Wang, K.; Zhang, D. An End-to-end Computational Ghost Imaging Method that Suppresses. Phys. Rev. Lett. 2002, 89, 113601. [Google Scholar]
- Saypadith, S. A Study on Anomaly Detection in Surveillance. Neural Netw. 2006, 313, 504–507. [Google Scholar]
- Lin, C.; Peng, F.; Wang, B.H.; Sun, W.F.; Kong, X.J. Research on PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. J. Electron. Sci. Technol. 2012, 10, 352–357. [Google Scholar]
- Keydel, E.R.; Lee, S.W.; Moore, J.T. MSTAR extended operating conditions: A tutorial. Algorithms Synth. Aperture Radar Imag. III 1996, 2757, 228–242. [Google Scholar]
- Yang, Y.; Qiu, Y.; Lu, C. Automatic target classification-experiments on the MSTAR SAR images. In Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS International Workshop on Self-Assembling Wireless Network, Towson, MD, USA, 20–22 June 2005; IEEE: Piscataway, NJ, USA; pp. 2–7. [Google Scholar]
- Chakraborty, S.; Amrita, A.; Choudhury, T.; Sille, R.; Dutta, C.; Dewangan, B.K. Multi-view deep cnn for automated target recognition and classification of synthetic aperture radar image. J. Adv. Inf. Technol. Vol. 2022, 13, 415–416. [Google Scholar] [CrossRef]
- Vespe, M.; Greidanus, H. SAR image quality assessment and indicators for vessel and oil spill detection. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4726–4734. [Google Scholar] [CrossRef]
- Tang, Z.; Yu, C.; Deng, Y.; Fang, T.; Zheng, H. Evaluation of Deceptive Jamming Effect on SAR Based on Visual Consistency. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12246–12262. [Google Scholar] [CrossRef]
- Cui, Y.; Zhou, G.; Yang, J.; Yamaguchi, Y. Unsupervised estimation of the equivalent number of looks in SAR images. IEEE Geosci. Remote Sens. Lett. 2011, 8, 710–714. [Google Scholar] [CrossRef]
- Kulkarni, S.; Kedar, M.; Rege, P.P. Comparison of Different Speckle Noise Reduction Filters for RISAT-1 SAR Imagery. In Proceedings of the 2018 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 16–19 March 2018; IEEE: Piscataway, NJ, USA; pp. 0537–0541. [Google Scholar]
- Gong, G.; Zhang, H.; Yao, M. Speckle noise reduction algorithm with total variation regularization in optical coherence tomography. Opt. Express 2015, 23, 24699–24712. [Google Scholar] [CrossRef] [PubMed]
- Asuero, A.G.; Sayago, A.; González, A.G. The correlation coefficient: An overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, H. The Temperature Vegetation Dryness Index (TVDI) Based on Bi-Parabolic NDVI-Ts Space and Gradient-Based Structural Similarity (GSSIM) for Long-Term Drought Assessment Across Shaanxi Province, China (2000–2016). Remote Sens. 2018, 10, 959. [Google Scholar] [CrossRef]
- Chen, G.H.; Yang, C.L.; Xie, S.L. Gradient-based structural similarity for image quality assessment. In Proceedings of the 2006 International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; IEEE: Piscataway, NJ, USA; pp. 2929–2932. [Google Scholar]
- Cui, G.; Feng, H.; Xu, Z.; Li, Q.; Chen, Y. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition. Opt. Commun. 2015, 341, 199–209. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, D.; Lu, H. Multi-focus image fusion with a natural enhancement via a joint multi-level deeply supervised convolutional neural network. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 1102–1115. [Google Scholar] [CrossRef]
Image | ENL | AG | MSD | GSSIM | CC |
---|---|---|---|---|---|
Figure 8a (the original image) | 2.5604 | 2.7145 | 0.1540 | — | — |
Figure 8b (the first sample) | 1.9764 | 2.7114 | 0.1580 | 0.9518 | 0.9964 |
Figure 8c (the second sample) | 1.9090 | 2.6935 | 0.1580 | 0.9516 | 0.9963 |
Figure 8d (the third sample) | 1.9092 | 2.7235 | 0.1583 | 0.9546 | 0.9967 |
Average of the samples | 1.9315 | 2.7095 | 0.1581 | 0.9527 | 0.9965 |
Similarity | 0.7544 | 0.9982 | 0.9741 | 0.9527 | 0.9965 |
Image | ENL | AG | MSD | GSSIM | CC |
---|---|---|---|---|---|
Figure 12a (the original image) | 2.5604 | 2.7145 | 0.1540 | — | — |
Figure 12b (the first sample) | 1.6677 | 2.3372 | 0.1404 | 0.5998 | 0.6492 |
Figure 12c (the second sample) | 1.7150 | 2.1778 | 0.1429 | 0.5710 | 0.6353 |
Figure 12d (the third sample) | 0.5637 | 2.4288 | 0.1766 | 0.5514 | 0.8903 |
Average of the samples | 1.3155 | 2.3146 | 0.1533 | 0.5741 | 0.7249 |
Similarity | 0.5138 | 0.8527 | 0.9955 | 0.5741 | 0.7249 |
Image | ENL | AG | MSD | GSSIM | CC |
---|---|---|---|---|---|
Figure 16a (the original image) | 2.5604 | 2.7145 | 0.1540 | — | — |
Figure 16b (the first sample) | 3.3169 | 2.5301 | 0.1870 | 0.5576 | 0.3571 |
Figure 16c (the second sample) | 2.6301 | 2.2620 | 0.1870 | 0.5722 | 0.2373 |
Figure 16d (the third sample) | 2.7258 | 2.3726 | 0.1921 | 0.5425 | 0.1951 |
Average of the samples | 2.8903 | 2.3882 | 0.1887 | 0.5574 | 0.2632 |
Similarity | 0.8859 | 0.8798 | 0.8161 | 0.5574 | 0.2632 |
Image | ENL | AG | MSD | GSSIM | CC |
---|---|---|---|---|---|
Figure 18a (the original image) | 2.5604 | 2.7145 | 0.1540 | — | — |
Figure 18b (the first sample) | 1.6197 | 2.6917 | 0.1560 | 0.8681 | 0.9815 |
Figure 18c (the second sample) | 1.6324 | 2.6330 | 0.1515 | 0.8652 | 0.9810 |
Figure 18d (the third sample) | 1.6421 | 2.6713 | 0.1614 | 0.8620 | 0.9807 |
Average of the samples | 1.6314 | 2.6653 | 0.1563 | 0.8651 | 0.9811 |
Similarity | 0.6371 | 0.9818 | 0.9853 | 0.8651 | 0.9811 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, S.; Li, G.; Liu, Y.; Lu, W.; Zhang, Q.; Chao, K. A GAN-Based Augmentation Scheme for SAR Deceptive Jamming Templates with Shadows. Remote Sens. 2023, 15, 4756. https://doi.org/10.3390/rs15194756
Lang S, Li G, Liu Y, Lu W, Zhang Q, Chao K. A GAN-Based Augmentation Scheme for SAR Deceptive Jamming Templates with Shadows. Remote Sensing. 2023; 15(19):4756. https://doi.org/10.3390/rs15194756
Chicago/Turabian StyleLang, Shinan, Guiqiang Li, Yi Liu, Wei Lu, Qunying Zhang, and Kun Chao. 2023. "A GAN-Based Augmentation Scheme for SAR Deceptive Jamming Templates with Shadows" Remote Sensing 15, no. 19: 4756. https://doi.org/10.3390/rs15194756
APA StyleLang, S., Li, G., Liu, Y., Lu, W., Zhang, Q., & Chao, K. (2023). A GAN-Based Augmentation Scheme for SAR Deceptive Jamming Templates with Shadows. Remote Sensing, 15(19), 4756. https://doi.org/10.3390/rs15194756