Comparative Verification of Leaf Area Index Products for Different Grassland Types in Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Leaf Area Index Measurement
2.3. Leaf Area Index Products
2.4. Methodology
2.4.1. Data Processing
2.4.2. Leaf Area Index Reference Maps
2.4.3. Validation of Leaf Area Index Products
3. Results
3.1. Indirect Validation Based on Leaf Area Index Reference Maps
3.2. Temporal Changes of Leaf Area Index by Grassland Types
3.3. Spatial Distribution of Leaf Area Index by Grassland Types
3.4. Comparison among Four Leaf Area Index Products
4. Discussion
4.1. Validations in Grassland
4.2. Comparison with Other Similar Studies
4.3. Uncertainties in the Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation of Symbol | Description | LAI Products |
AVHRR | Advanced very high-resolution radiometer | AVHRR |
GLASS | Global land surface satellite | GLASS LAI |
MODIS | Moderate-resolution imaging spectroradiometer | MODIS LAI |
GLOBMAP | Global LAI map of Chinese Academy of Sciences | GLOBMAP LAI |
GEOV2 | Geoland2 version 2 | GEOV2 LAI |
MERIS | Medium-resolution imaging spectrometer instrument | MERIS |
MISR | Multi-angle imaging spectroradiometer | MISR LAI |
References
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Jin, H.A.; Li, A.N.; Wang, J.D.; Bo, Y.C. Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data. Eur. J. Agron. 2016, 78, 1–12. [Google Scholar] [CrossRef]
- Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.; Nobre, C.A.; et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef]
- Arora, V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys. 2002, 40, 1006. [Google Scholar] [CrossRef]
- Xiao, Z.Q.; Liang, S.L.; Jiang, B. Evaluation of four long time-series global leaf area index products. Agric. For. Meteorol. 2017, 246, 218–230. [Google Scholar] [CrossRef]
- Fang, H.L.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Jin, H.A.; Li, A.N.; Bian, J.H.; Nan, X.; Zhao, W.; Zhang, Z.J.; Yin, G.F. Intercomparison and validation of MODIS and GLASS leaf area index (LAI) products over mountain areas: A case study in southwestern China. Int. J. Appl. Earth Obs. Geoinf. 2017, 55, 52–67. [Google Scholar] [CrossRef]
- Fang, H.L.; Wei, S.S.; Liang, S.L. Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens. Environ. 2012, 119, 43–54. [Google Scholar] [CrossRef]
- Jiapaer, G.; Liang, S.L.; Yi, Q.X.; Liu, J.P. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar] [CrossRef]
- Piao, S.L.; Yin, G.D.; Tan, J.G.; Cheng, L.; Huang, M.T.; Li, Y.; Liu, R.G.; Mao, J.F.; Myneni, R.B.; Peng, S.S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Li, W.T.; Migliavacca, M.; Forkel, M.; Denissen, J.M.C.; Reichstein, M.; Yang, H.; Duveiller, G.; Weber, U.; Orth, R. Widespread increasing vegetation sensitivity to soil moisture. Nat. Commun. 2022, 13, 3959. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Yi, C.X.; Chen, D.L.; Xu, P.P.; Zhou, T. Hotter and drier climate made the mediterranean europe and northern africa region a shrubbier landscape. Oecologia 2021, 197, 1111–1126. [Google Scholar] [CrossRef]
- Li, G.Q.; Zhang, H.Y.; Zhang, L.C.; Wang, Y.Y.; Tian, C.Z. Development and trend of Earth observation data sharing. J. Remote Sens. 2016, 20, 979–990. (In Chinese) [Google Scholar] [CrossRef]
- Fang, H.L. Development and validation of satellite leaf area index (LAI) products in China. Remote Sens. Technol. Appl. 2020, 35, 990–1003. (In Chinese) [Google Scholar]
- Li, X.L.; Lu, H.; Yu, L.; Yang, K. Comparison of the spatial characteristics of four remotely sensed leaf area index products over China: Direct validation and relative uncertainties. Remote Sens. 2018, 10, 148. [Google Scholar] [CrossRef]
- Fang, H.L.; Wei, S.S.; Jiang, C.Y.; Scipal, K. Theoretical uncertainty analysis of global MODIS, CYCLOPES, and GLOBCARBON LAI products using a triple collocation method. Remote Sens. Environ. 2012, 124, 610–621. [Google Scholar] [CrossRef]
- Claverie, M.; Vermote, E.F.; Weiss, M.; Baret, F.; Hagolle, O.; Demarez, V. Validation of coarse spatial resolution LAI and FAPAR time series over cropland in southwest France. Remote Sens. Environ. 2013, 139, 216–230. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Garrigues, S.; Lacaze, R. LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: Validation and comparison with MODIS collection 4 products. Remote Sens. Environ. 2007, 110, 317–331. [Google Scholar] [CrossRef]
- Fang, H.L.; Jiang, C.Y.; Li, W.J.; Wei, S.S.; Baret, F.; Chen, J.M.; Garcia-Haro, J.; Liang, S.L.; Liu, R.G.; Myneni, R.B.; et al. Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties. J. Geophys. Res. Biogeosci. 2013, 118, 529–548. [Google Scholar] [CrossRef]
- Li, Z.W.; Tang, H.; Xin, X.P.; Zhang, B.H.; Wang, D.L. Assessment of the MODIS LAI product using ground measurement data and HJ-1A/1B imagery in the meadow steppe of Hulunber, China. Remote Sens. 2014, 6, 6242–6265. [Google Scholar] [CrossRef]
- Liu, Y.B.; Xiao, J.F.; Ju, W.M.; Zhu, G.L.; Wu, X.C.; Fan, W.L.; Li, D.Q.; Zhou, Y.L. Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sens. Environ. 2018, 206, 174–188. [Google Scholar] [CrossRef]
- Jiang, C.Y.; Ryu, Y.; Fang, H.L.; Myneni, R.; Claverie, M.; Zhu, Z.C. Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Glob. Chang. Biol. 2017, 23, 4133–4146. [Google Scholar] [CrossRef]
- Zhu, Z.C.; Piao, S.L.; Myneni, R.B.; Huang, M.T.; Zeng, Z.Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Deng, F.; Chen, J.M.; Plummer, S.; Chen, M.Z.; Pisek, J. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2219–2229. [Google Scholar] [CrossRef]
- Liu, R.G.; Liu, Y. Generation of new cloud masks from MODIS land surface reflectance products. Remote Sens. Environ. 2013, 133, 21–37. [Google Scholar] [CrossRef]
- Yang, F. Research on Remote Sensing Based LAI Inversion Using PROSAIL Model in Inner Mongolian Grasslands; Inner Mongolia Normal University: Hohhot, China, 2016. [Google Scholar]
- Wang, C.; Chen, J.; Wu, J.; Tang, Y.H.; Shi, P.J.; Black, T.A.; Zhu, K. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 2017, 196, 1–12. [Google Scholar] [CrossRef]
- Shen, B.B.; Ding, L.; Ma, L.C.; Li, Z.W.; Pulatov, A.; Kulenbekov, Z.; Chen, J.Q.; Mambetova, S.; Hou, L.L.; Xu, D.W.; et al. Modeling the leaf area index of Inner mongolia grassland based on machine learning regression algorithms incorporating empirical knowledge. Remote Sens. 2022, 14, 4196. [Google Scholar] [CrossRef]
- Geng, Y.B.; Dong, Y.S.; Qi, Y.C. Review about the carbon cycle researches in grassland ecosystem. Prog. Geogr. 2004, 3, 74–81. (In Chinese) [Google Scholar] [CrossRef]
- Zeng, Y.L.; Li, J.; Liu, Q.H. Review article: Global LAI ground validation dataset and product validation framework. Adv. Earth Sci. 2012, 27, 165–174. (In Chinese) [Google Scholar]
- Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muys, B.; Coppin, P.; Weiss, M.; Baret, F. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric. For. Meteorol. 2004, 121, 19–35. [Google Scholar] [CrossRef]
- Hou, J.Y.; Zhou, Y.L.; Liu, Y. Spatial and temporal differences of GPP simulated by different satellite-derived LAI in China. Remote Sens. Technol. Appl. 2020, 35, 1015–1027. (In Chinese) [Google Scholar]
- Xie, X.Y.; Li, A.N.; Jin, H.A.; Tan, J.B.; Wang, C.B.; Lei, G.B.; Zhang, Z.J.; Bian, J.H.; Nan, X. Assessment of five satellite-derived LAI datasets for GPP estimations through ecosystem models. Sci. Total Environ. 2019, 690, 1120–1130. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Meza, C.M.; Rivera, J.P.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, J.M.; Tang, S.H.; Li, G.C.; Guo, Z.D. Inter-comparison and validation of the FY-3A/MERSI LAI product over Mainland China. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. (JSTARS) 2014, 7, 458–468. [Google Scholar] [CrossRef]
- Garrigues, S.; Lacaze, R.; Baret, F.; Morisette, J.T.; Weiss, M.; Nickeson, J.E.; Fernandes, R.; Plummer, S.; Shabanov, N.V.; Myneni, R.B.; et al. Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res. 2008, 113, G02028. [Google Scholar] [CrossRef]
- Yin, G.F.; Li, A.N.; Zhang, Z.J.; Lei, G.B. Temporal validation of four LAI products over grasslands in the northeastern Tibetan Plateau. Photogramm. Eng. Remote Sens. 2020, 86, 225–233. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.G. Retrieval of global long-term leaf area index from LTDR AVHRR and MODIS observations. J. Geo-Inf. Sci. 2015, 17, 1304–1312. [Google Scholar]
- Yan, H.; Wang, S.Q.; Billesbach, D.; Oechel, W.; Zhang, J.H.; Meyers, T.; Martin, T.A.; Matamala, R.; Baldocchi, D.; Bohrer, G.; et al. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model. Remote Sens. Environ. 2012, 124, 581–595. [Google Scholar] [CrossRef]
- Ding, L.; Li, Z.W.; Shen, B.B.; Wang, X.; Xu, D.W.; Yan, R.R.; Yan, Y.C.; Xin, X.P.; Xiao, J.F.; Li, M.; et al. Spatial patterns and driving factors of aboveground and belowground biomass over the eastern Eurasian steppe. Sci. Total Environ. 2022, 803, 149700. [Google Scholar] [CrossRef] [PubMed]
Product | Sensor | Spatial Resolution | Temporal Resolution | Algorithms | Reference |
---|---|---|---|---|---|
GEOV2 | MODIS | 300 m | 10 d | NN (red, NIR, SWIR, SZA) | [7] |
GLASS | SPOT/VEGETATION | 500 m | 8 d | NN (red, NIR) | [9] |
GLOBMAP | MODIS | 500 m | 8 d | VI-LAI relationship | [8] |
MODIS (MOD15A2H) | MODIS | 500 m | 8 d | LUT (red, NIR) | [10] |
Grassland Types | Row/Column | Satellite Transit Date (Year-Month-Day) | Experiment Date (Year-Month-Day) |
---|---|---|---|
Meadow steppe | 123/26 | 2014-07-18 | 2014-07-18 |
123/26 | 2019-08-01 | 2019-08-06 | |
Typical steppe | 123/30 | 2019-08-01 | 2019-08-01 |
123/30 | 2015-07-28 | 2015-07-23 | |
123/30 | 2015-07-26 | 2015-07-25 | |
Desert steppe | 126/31 | 2019-08-06 | 2019-08-06 |
126/31 | 2019-08-22 | 2019-08-20 | |
126/31 | 2015-07-26 | 2015-07-25 |
Indicators | Meadow Steppe | Typical Steppe | Desert Steppe | Inner Mongolia |
---|---|---|---|---|
n | 52 | 44 | 33 | 129 |
Mean (m2/m2) | 1.84 | 1.16 | 0.73 | 1.17 |
SD (m2/m2) | 0.57 | 0.47 | 0.42 | 0.63 |
Grassland Types | Model | R2 | F-Statistic | Sig. F |
---|---|---|---|---|
Meadow steppe | y = 7.87x + 0.24 | 0.54 | 41.44 | 0.000 |
Typical steppe | y = 7.89x + 0.27 | 0.56 | 53.33 | 0.000 |
Desert steppe | y = 3.78x + 0.09 | 0.63 | 70.49 | 0.000 |
Indicators | Meadow Steppe | Typical Steppe | Desert Steppe | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a 1 | b 2 | c 3 | d 4 | a | b | c | d | a | b | c | d | |
R2 | 0.18 | 0.26 | 0.35 | 0.05 | 0.21 | 0.32 | 0.16 | 0.31 | 0.39 | 0.36 | 0.02 | 0.12 |
RMSE | 0.42 | 0.41 | 0.45 | 1.01 | 0.40 | 0.38 | 0.72 | 0.49 | 0.30 | 0.34 | 0.51 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, B.; Guo, J.; Li, Z.; Chen, J.; Fang, W.; Kussainova, M.; Amarjargal, A.; Pulatov, A.; Yan, R.; Anenkhonov, O.A.; et al. Comparative Verification of Leaf Area Index Products for Different Grassland Types in Inner Mongolia, China. Remote Sens. 2023, 15, 4736. https://doi.org/10.3390/rs15194736
Shen B, Guo J, Li Z, Chen J, Fang W, Kussainova M, Amarjargal A, Pulatov A, Yan R, Anenkhonov OA, et al. Comparative Verification of Leaf Area Index Products for Different Grassland Types in Inner Mongolia, China. Remote Sensing. 2023; 15(19):4736. https://doi.org/10.3390/rs15194736
Chicago/Turabian StyleShen, Beibei, Jingpeng Guo, Zhenwang Li, Jiquan Chen, Wei Fang, Maira Kussainova, Amartuvshin Amarjargal, Alim Pulatov, Ruirui Yan, Oleg A. Anenkhonov, and et al. 2023. "Comparative Verification of Leaf Area Index Products for Different Grassland Types in Inner Mongolia, China" Remote Sensing 15, no. 19: 4736. https://doi.org/10.3390/rs15194736
APA StyleShen, B., Guo, J., Li, Z., Chen, J., Fang, W., Kussainova, M., Amarjargal, A., Pulatov, A., Yan, R., Anenkhonov, O. A., Zhou, W., & Xin, X. (2023). Comparative Verification of Leaf Area Index Products for Different Grassland Types in Inner Mongolia, China. Remote Sensing, 15(19), 4736. https://doi.org/10.3390/rs15194736