Real-Time Kinematic Positioning (RTK) for Monitoring of Barchan Dune Migration in the Sanlongsha Dune Field, the Northern Kumtagh Sand Sea, China
Abstract
:1. Introduction
Region | Migration Rate (m/yr) | Direction (° from North) | Measuring Position | Reference |
---|---|---|---|---|
Nazca to Tanaca area, Southern Peru | 11 to 60 | 135 | LT | Gay (1999) [19] |
Northern Alxa Plateau, Inner Mongolia, China | 5.3 | 92 to 136 | B | Yao et al. (2007) [20] |
Navajo Nation, Southwestern U.S. | 39.7 | / | LT | Bogle et al. (2015) [17] |
In-Salah, Central Algerian Sahara | 7 to 18 | 63 | LT | Boulghobra (2016) [12] |
Qatar | 2.5 to 27.5 | 156.6 | LT | Michel et al. (2018) [25] |
Central Hexi Corridor, China | 8 to 53 | 115.6 | (LT + WT + LH + RH)/4 | Zhang et al. (2018) [28] |
Quruq Desert, China | 8.9 to 32.1 | 233 to 248 | (LT + B + WT + LH + RH)/5 | Yang et al. (2019) [24] |
Qaidam Basin, China | 4.66 | / | (B + LH + RH)/3 | Li et al. (2021) [29] |
Kumtagh Sand Sea, China | 7 to 95.2 | 186.6 to 210.8 | LT | Yang et al. (2021) [5] |
Badain Jaran and Tengger Desert, China | 5.88 to 19.55 | 109 to 135 | (LT + B + WT + LH + RH)/5 | Zhang et al. (2022) [30] |
2. Study Area
3. Methods
4. Results
4.1. The Wind Energy Environment
4.2. Dune Migration at Different Positions
4.3. Dune Shape Changes in Different Periods
4.4. Relationships between the Wind Regime and Dune Migration
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Methuen: London, UK, 1941; p. 265. [Google Scholar]
- Baddock, M.C.; Livingstone, I.; Wiggs, G.F.S. The geomorphological significance of airflow patterns in transverse dune interdunes. Geomorphology 2007, 87, 322–336. [Google Scholar] [CrossRef]
- Kok, J.F.; Parteli, E.J.; Michaels, T.I.; Karam, D.B. The physics of wind-blown sand and dust. Rep. Prog. Phys. Phys. Soc. 2012, 75, 106901. [Google Scholar] [CrossRef] [PubMed]
- Parteli, E.J.R.; Durán, O.; Bourke, M.C.; Tsoar, H.; Pöschel, T.; Herrmann, H. Origins of barchan dune asymmetry: Insights from numerical simulations. Aeolian Res. 2014, 12, 121–133. [Google Scholar] [CrossRef]
- Yang, Z.; Qian, G.; Dong, Z.; Tian, M.; Lu, J. Migration of barchan dunes and factors that influence migration in the Sanlongsha dune field of the northern Kumtagh Sand Sea, China. Geomorphology 2021, 378, 107615. [Google Scholar] [CrossRef]
- Qian, G.; Yang, Z.; Tian, M.; Dong, Z.; Liang, A.; Xing, X. From dome dune to barchan dune: Airflow structure changes measured with particle image velocimetry in a wind tunnel. Geomorphology 2021, 382, 107681. [Google Scholar] [CrossRef]
- Goudie, A.S. Mega-Yardangs: A Global Analysis. Geogr. Compass. 2006, 1, 65–81. [Google Scholar] [CrossRef]
- Lancaster, N. Geomorphology of Desert Dunes; Routledge: London, UK, 1995; p. 290. [Google Scholar]
- Qian, G.; Yang, Z.; Dong, Z.; Luo, W.; Zhang, Z.; Lu, J. Long-term measurements of aeolian transport directional variations over a zibar surface in the northern Kumtagh Sand Sea. Geomorphology 2020, 371, 107452. [Google Scholar] [CrossRef]
- Lancaster, N. Variations in wind velocity and sand transport on the windward flanks of desert sand dunes. Sedimentology 1985, 32, 581–593. [Google Scholar] [CrossRef]
- Lancaster, N. The Namib Sand Sea: Dune Forms, Processes and Sediments; Balkema: Rotterdam, The Netherlands, 1989; p. 192. [Google Scholar]
- Boulghobra, N. Climatic data and satellite imagery for assessing the aeolian sand deposit and barchan migration, as a major risk sources in the region of In-Salah (Central Algerian Sahara). Arab. J. Geosci. 2016, 9, 450. [Google Scholar] [CrossRef]
- Manzolli, R.P.; Portz, L.C.; Bouzas, A.F.; Bitencourt, V.J.B.; Carrió, J.A. Contribution of Reverse Dune Migration to Stabilization of a Transgressive Coastal Dune Field at Lagoa do Peixe National Park Dune Field (South of Brazil). Remote Sens. 2023, 15, 3470. [Google Scholar] [CrossRef]
- Koprowski, M.; Winchester, V.; Zielski, A. Tree reactions and dune movements: Slowinski National Park, Poland. Catena 2010, 81, 55–65. [Google Scholar] [CrossRef]
- Navarro, M.; Muñoz-Pérez, J.J.; Román-Sierra, J.; Tsoar, H.; Rodríguez, I.; Gómez-Pina, G. Assessment of highly active dune mobility in the medium, short and very short term. Geomorphology 2011, 129, 14–28. [Google Scholar] [CrossRef]
- Elbelrhiti, H. Initiation and early development of barchan dunes: A case study of the Moroccan Atlantic Sahara desert. Geomorphology 2012, 138, 181–188. [Google Scholar] [CrossRef]
- Bogle, R.; Redsteer, M.H.; Vogel, J. Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, southwestern United States. Geomorphology 2015, 228, 41–51. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wang, R.; Guo, J.; Luo, X.; Li, Y.; Cui, W. Monitoring and influencing factors of dune movement speed along the Yellow River using UAV technology. Trans. Chin. Soc. Agric. Eng. 2021, 37, 57–64. (In Chinese) [Google Scholar]
- Gay, S.P. Observations regarding the movement of barchan sand dunes in the Nazca to Tanaca area of southern Peru. Geomorphology 1999, 27, 279–293. [Google Scholar]
- Yao, Z.Y.; Wang, T.; Han, Z.W.; Zhang, W.M.; Zhao, A.G. Migration of sand dunes on the northern Alxa Plateau, Inner Mongolia, China. J. Arid Environ. 2007, 70, 80–93. [Google Scholar] [CrossRef]
- Vermeesch, P.; Drake, N. Remotely sensed dune celerity and sand flux measurements of the world’s fastest barchans (Bodélé, Chad). Geophys. Res. Lett. 2008, 35, L24404. [Google Scholar] [CrossRef]
- Finkel, H.J. The Barchans of Southern Peru. J. Geol. 1959, 67, 614–647. [Google Scholar] [CrossRef]
- Slattery; Michael, C. Barchan migration on the Kuiseb River Delta, Namibia. S. Afr. Geogr. J. 1990, 72, 5–10. [Google Scholar]
- Yang, J.; Dong, Z.; Liu, Z.; Shi, W.; Chen, G.; Shao, T.; Zeng, H. Migration of barchan dunes in the western Quruq Desert, northwestern China. Earth Surf. Proc. Land. 2019, 44, 2016–2029. [Google Scholar] [CrossRef]
- Sylvain, M.; Jean-Philippe, A.; Fran Ois, A.; Ewing, R.C.; Nathalie, V.; Essam, H. Comparing dune migration measured from remote sensing with sand flux prediction based on weather data and model, a test case in Qatar. Earth Planet. Sci. Lett. 2018, 497, 12–21. [Google Scholar]
- El-Magd, I.A.; Hassan, O.; Arafat, S. Quantification of Sand Dune Movements in the South Western Part of Egypt, Using Remotely Sensed Data and GIS. J. Geogr. Inf. Syst. 2013, 5, 498–508. [Google Scholar] [CrossRef]
- Hamdan, M.A.; Refaat, A.A.; Wahed, M.A. Morphologic characteristics and migration rate assessment of barchan dunes in the Southeastern Western Desert of Egypt. Geomorphology 2016, 257, 57–74. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Z.; Hu, G.; Parteli, E.J.R. Migration and Morphology of Asymmetric Barchans in the Central Hexi Corridor of Northwest China. Geosciences 2018, 8, 204. [Google Scholar] [CrossRef]
- Li, J.; Jiao, J.; Cao, X.; Bai, L.; Chen, T.; Yan, X.; Qi, H. Spatial regionalization and response to morphological parameters of dune migration in the Qaidam Basin of China. Trans. Chin. Soc. Agric. Eng. 2021, 37, 309–314. (In Chinese) [Google Scholar]
- Zhang, Y.; Ma, Y.; Su, Z.; Liang, A.; Zhang, X.; Cui, Y. Dune movement in the joint zone of the Badain Jaran Desert and Tengger Desert. J. Desert Res. 2022, 42, 82–91. (In Chinese) [Google Scholar]
- Yang, Z.; Qian, G.; Han, Z.; Dong, Z.; Luo, W.; Zhang, Z.; Lu, J.; Liang, A.; Tian, M. Variation in grain-size characteristics as a function of wind direction and height in the Sanlongsha dune field of the northern Kumtagh Desert, China. Aeolian Res. 2019, 40, 53–64. [Google Scholar] [CrossRef]
- Parteli, E.J.R.; Schwämmle, V.; Herrmann, H.J.; Monteiro, L.H.U.; Maia, L.P. Profile measurement and simulation of a transverse dune field in the Lençóis Maranhenses. Geomorphology 2006, 81, 29–42. [Google Scholar] [CrossRef]
- Baddock, M.C.; Wiggs, G.F.S.; Livingstone, I. A field study of mean and turbulent flow characteristics upwind, over and downwind of barchan dunes. Earth Surf. Proc. Land. 2011, 36, 1435–1448. [Google Scholar] [CrossRef]
- Elbelrhiti, H. Field evidence of appearance and disappearance of the brink line on barchans. Aeolian Res. 2015, 18, 115–120. [Google Scholar] [CrossRef]
- Isenberg, O.; Yizhaq, H.; Tsoar, H.; Wenkart, R.; Karnieli, A.; Kok, J.F.; Katra, I. Megaripple flattening due to strong winds. Geomorphology 2011, 131, 69–84. [Google Scholar] [CrossRef]
- Fryberger, S.G.; Dean, G. Dune Forms and Wind Regime; US Geological Survey and United States National Aeronautics and Space Administration: Washington, DC, USA, 1979; pp. 137–169.
- Pearce, K.I.; Walker, I.J. Frequency and magnitude biases in the’Fryberger’model, with implications for characterizing geomorphically effective winds. Geomorphology 2005, 68, 39–55. [Google Scholar] [CrossRef]
- Hunter, E.R.; Richmond, M.B.; Alpha, R.T. Storm-controlled oblique dunes of the Oregon coast. Geol. Soc. Am. Bull. 1983, 94, 1450–1465. [Google Scholar] [CrossRef]
- Qian, G.; Yang, Z.; Luo, W.; Dong, Z.; Lu, J.; Tian, M. Morphological and sedimentary characteristics of dome dunes in the northeastern Qaidam Basin, China. Geomorphology 2020, 350, 106923. [Google Scholar] [CrossRef]
- Bristow, C.S. Bounding Surfaces in a Barchan Dune: Annual Cycles of Deposition? Seasonality or Erosion by Superimposed Bedforms? Remote Sens. 2019, 11, 965. [Google Scholar] [CrossRef]
- Inmaculada, R.; David, G.; Tomás, M.; José, S.M.; Isabel, M.; Silvia, M.; Fernando, B.; Jordi, S.; Miguel, R.J.; Javier, G.F. Study and Evolution of the Dune Field of La Banya Spit in Ebro Delta (Spain) Using LiDAR Data and GPR. Remote Sens. 2021, 13, 802. [Google Scholar] [CrossRef]
- Li, J. Development Environment and Evolution Patterns of Linear Dunes in the Qaidam Basin; Xi’an Jiaotong University Press: Xi’an, China, 2020; p. 165. (In Chinese) [Google Scholar]
- Pont, S.; Narteau, C.; Gao, X. Two modes for dune orientation. Geology 2014, 42, 743–746. [Google Scholar] [CrossRef]
Dune | Measurement Date (Y.M.D) | Bottom Area (m2) | Surface Area (m2) | Volume (m3) | Height (m) | Perimeter (m) | Left Horn Length (m) | Right Horn Length (m) | Windward Length (m) | Leeward Length (m) | Width (m) | Dune Direction (°) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | 2018.06.05 | 2844.71 | 2920.34 | 5697.27 | 4.60 | 269.06 | 45.16 | 36.50 | 39.40 | 8.65 | 54.41 | 188.91 |
2018.11.04 | 3151.61 | 3203.78 | 6012.88 | 4.30 | 287.80 | 38.92 | 41.25 | 38.48 | 8.17 | 52.68 | 196.52 | |
2019.04.06 | 3644.87 | 3691.78 | 6545.76 | 4.30 | 287.71 | 36.84 | 40.08 | 48.28 | 8.09 | 57.82 | 194.70 | |
2019.06.12 | 3333.20 | 3385.78 | 6197.13 | 4.30 | 281.62 | 40.14 | 34.54 | 48.74 | 8.08 | 48.52 | 195.30 | |
2019.09.17 | 3238.59 | 3292.69 | 6478.58 | 4.20 | 278.15 | 34.06 | 37.02 | 49.71 | 7.60 | 45.31 | 197.02 | |
2020.01.11 | 3120.61 | 3177.63 | 6229.83 | 4.10 | 274.46 | 33.55 | 31.86 | 54.61 | 8.01 | 54.26 | 193.02 | |
MPRE | 0.13 | 0.13 | 0.06 | 0.07 | 0.03 | 0.18 | 0.12 | 0.17 | 0.07 | 0.11 | / | |
MAE | 422.61 | 413.11 | 352.19 | 0.30 | 8.00 | 7.05 | 4.37 | 8.07 | 0.55 | 5.66 | 2.78 | |
D2 | 2018.06.05 | 877.08 | 890.95 | 945.69 | 2.20 | 136.73 | 19.85 | 16.13 | 21.37 | 4.12 | 31.91 | 197.80 |
2018.09.02 | 958.80 | 963.47 | 784.97 | 2.10 | 141.38 | 17.91 | 18.91 | 22.39 | 4.57 | 26.75 | 203.12 | |
2018.11.04 | 918.65 | 923.04 | 752.16 | 2.10 | 127.57 | 11.76 | 14.11 | 22.23 | 4.21 | 21.77 | 209.58 | |
2019.01.24 | 1201.45 | 1197.33 | 823.98 | 1.70 | 148.39 | 13.33 | 12.76 | 31.55 | 3.61 | 23.48 | 192.29 | |
2019.04.06 | 1283.74 | 1282.47 | 903.49 | 1.50 | 145.07 | 10.76 | 11.86 | 34.94 | 3.16 | 23.55 | 202.04 | |
2019.06.12 | 968.04 | 961.29 | 570.68 | 1.30 | 120.33 | 4.25 | 6.18 | 32.51 | 1.92 | 17.53 | 205.06 | |
MPRE | 0.24 | 0.24 | 0.19 | 0.21 | 0.09 | 0.53 | 0.42 | 0.27 | 0.27 | 0.32 | / | |
MAE | 249.11 | 246.04 | 148.86 | 0.38 | 11.81 | 6.87 | 5.59 | 7.44 | 0.97 | 7.75 | 7.93 | |
D3 | 2018.06.05 | 1518.89 | 1559.70 | 2635.27 | 3.40 | 228.88 | 38.25 | 40.52 | 22.31 | 6.71 | 47.43 | 191.67 |
2018.09.02 | 1526.14 | 1556.69 | 2197.29 | 3.30 | 204.04 | 30.92 | 31.78 | 21.11 | 6.08 | 49.21 | 196.32 | |
2018.11.04 | 1725.99 | 1751.70 | 2202.55 | 3.40 | 222.12 | 28.23 | 39.76 | 20.54 | 6.46 | 42.07 | 198.50 | |
2019.01.24 | 1585.73 | 1604.59 | 2041.49 | 3.00 | 205.73 | 20.45 | 39.06 | 20.12 | 5.72 | 38.57 | 198.51 | |
2019.04.06 | 1573.48 | 1592.17 | 1961.44 | 3.10 | 201.78 | 22.90 | 36.45 | 21.61 | 5.29 | 38.87 | 195.36 | |
2019.06.12 | 1330.82 | 1352.98 | 1537.57 | 2.90 | 179.08 | 22.84 | 28.58 | 20.38 | 5.72 | 38.42 | 198.97 | |
2019.09.17 | 1046.40 | 1057.37 | 1020.16 | 2.30 | 144.05 | 15.03 | 18.18 | 21.24 | 4.23 | 30.72 | 200.98 | |
2020.01.11 | 949.29 | 962.96 | 995.81 | 2.30 | 145.74 | 18.67 | 20.98 | 21.32 | 4.64 | 32.52 | 203.44 | |
MPRE | 0.23 | 0.23 | 0.44 | 0.15 | 0.20 | 0.55 | 0.27 | 0.06 | 0.20 | 0.24 | / | |
MAE | 318.90 | 321.93 | 811.32 | 0.44 | 37.45 | 13.59 | 8.61 | 1.23 | 1.10 | 9.48 | 5.47 |
Number | Period (M.Y) | Difference in RDD (°) | ||||||
---|---|---|---|---|---|---|---|---|
LT | B | WM | WT | RH | LH | Mean | ||
D1 | June 2018–November 2018 | 8.67 | 6.08 | 13.99 | 21.12 | 19.11 | 25.89 | 0.81 |
November 2018–April 2019 | 5.16 | 24.45 | 65.82 | 119.70 | 54.18 | 86.63 | 2.52 | |
April 2019–June 2019 | 8.98 | 12.03 | 9.84 | 7.73 | 22.07 | 4.25 | 9.40 | |
June 2019–September 2019 | 3.28 | 3.64 | 7.11 | 9.21 | 10.74 | 14.63 | 4.52 | |
September 2019–January 2020 | 13.78 | 7.75 | 4.57 | 23.39 | 15.49 | 66.59 | 8.97 | |
Mean | 7.97 | 10.79 | 20.27 | 36.23 | 24.32 | 39.60 | 5.24 | |
SD | 4.03 | 8.23 | 25.70 | 47.18 | 17.22 | 35.36 | 3.83 | |
D2 | January 2018–September 2018 | 1.46 | 2.01 | 6.21 | 10.77 | 0.45 | 10.74 | 1.54 |
September 2018–November 2018 | 4.85 | 3.72 | 4.05 | 5.56 | 4.13 | 21.41 | 5.91 | |
November 2018–January 2019 | 11.03 | 16.94 | 6.05 | 86.68 | 24.19 | 41.80 | 0.21 | |
January 2019–April 2019 | 8.74 | 3.18 | 30.28 | 132.70 | 37.62 | 7.46 | 20.57 | |
April 2019–June 2019 | 0.66 | 0.34 | 5.11 | 9.84 | 6.61 | 0.04 | 3.42 | |
Mean | 5.35 | 5.24 | 10.34 | 49.11 | 14.60 | 16.29 | 6.33 | |
SD | 4.03 | 5.97 | 10.00 | 51.59 | 14.11 | 14.49 | 7.38 | |
D3 | June 2018–September 2018 | 4.62 | 7.44 | 8.67 | 9.38 | 22.67 | 5.23 | 0.37 |
September 2018–November 2018 | 2.36 | 0.20 | 1.56 | 3.04 | 8.58 | 48.53 | 9.11 | |
November 2018–January 2019 | 2.63 | 13.58 | 23.56 | 34.55 | 40.10 | 117.21 | 13.83 | |
January 2019–April 2019 | 2.39 | 2.29 | 8.23 | 11.90 | 88.05 | 62.90 | 29.29 | |
April 2019–June 2019 | 11.80 | 11.49 | 12.95 | 15.78 | 16.12 | 10.20 | 13.06 | |
June 2019–September 2019 | 0.59 | 2.37 | 1.95 | 0.24 | 12.20 | 1.95 | 2.49 | |
September 2019–January 2020 | 3.19 | 5.04 | 7.50 | 4.90 | 3.67 | 4.84 | 4.86 | |
Mean | 3.94 | 6.06 | 9.20 | 11.40 | 27.34 | 35.84 | 10.43 | |
SD | 3.40 | 4.65 | 6.92 | 10.67 | 27.09 | 40.03 | 9.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, X.; Yang, Z.; Qian, G.; Zhou, G. Real-Time Kinematic Positioning (RTK) for Monitoring of Barchan Dune Migration in the Sanlongsha Dune Field, the Northern Kumtagh Sand Sea, China. Remote Sens. 2023, 15, 4728. https://doi.org/10.3390/rs15194728
Xing X, Yang Z, Qian G, Zhou G. Real-Time Kinematic Positioning (RTK) for Monitoring of Barchan Dune Migration in the Sanlongsha Dune Field, the Northern Kumtagh Sand Sea, China. Remote Sensing. 2023; 15(19):4728. https://doi.org/10.3390/rs15194728
Chicago/Turabian StyleXing, Xuegang, Zhuanling Yang, Guangqiang Qian, and Guanghong Zhou. 2023. "Real-Time Kinematic Positioning (RTK) for Monitoring of Barchan Dune Migration in the Sanlongsha Dune Field, the Northern Kumtagh Sand Sea, China" Remote Sensing 15, no. 19: 4728. https://doi.org/10.3390/rs15194728
APA StyleXing, X., Yang, Z., Qian, G., & Zhou, G. (2023). Real-Time Kinematic Positioning (RTK) for Monitoring of Barchan Dune Migration in the Sanlongsha Dune Field, the Northern Kumtagh Sand Sea, China. Remote Sensing, 15(19), 4728. https://doi.org/10.3390/rs15194728