Black Carbon in a City of the Atacama Desert before and after the Start of the COVID-19 Lockdown: Ground Measurements and MERRA-2 Reanalysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Site
2.2. Measuring Instruments
2.2.1. The Photoacoustic Extinctiometer (PAX)
2.2.2. The MERRA-2 BC Reanalysis
2.2.3. Meteorological Variables
2.2.4. HYSPLIT Model
3. Results and Discussion
3.1. Meteorological Measurements
3.1.1. Time Series of Precipitation
3.1.2. Seasonal and Diurnal Variation in Meteorological Variables
3.2. Temporal Variations of BC
3.2.1. BC Time Series
3.2.2. Seasonal Variation in BC
3.3. Daily Variation in BC
3.4. Days of High Concentration of PAX BC and MERRA-2 BC
3.5. Daily Cycle of Mid-Boundary Layer Height
3.6. Influence of Wind Speed on BC Concentration
3.7. Air Mass Analysis with HYSPLIT Backward Trajectories
3.8. Influence of the COVID-19 Lockdown on BC Concentration
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Period | Black Carbon | Statistics | Seasons | |||
---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | |||
PAX BC (µg m−3) MERRA-2 BC (µg m−3) | 2020 | 0.72 | 0.71 | 0.70 | 0.85 | |
2021 | 0.72 | 0.81 | 0.76 | 0.96 | ||
Weekdays | 2020–2021 | 0.72 | 0.76 | 0.73 | 0.91 | |
2020 | 0.08 | 0.07 | 0.06 | 0.12 | ||
2021 | 0.14 | 0.05 | 0.06 | 0.09 | ||
2020–2021 | 0.11 | 0.06 | 0.06 | 0.10 | ||
PAX BC | 2020 | 0.76 | 0.69 | 0.58 | 0.76 | |
(µg m−3) | 2021 | 0.67 | 0.68 | 0.66 | 0.81 | |
Weekends | 2020–2021 | 0.71 | 0.68 | 0.62 | 0.79 | |
MERRA-2 BC | 2020 | 0.09 | 0.07 | 0.07 | 0.10 | |
(µg m−3) | 2021 | 0.14 | 0.05 | 0.06 | 0.10 | |
2020–2021 | 0.11 | 0.06 | 0.06 | 0.10 |
References
- Intergovernmental Panel on Climate Change (IPCC). Short-lived climate forcers. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 817–922. Available online: https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-6/ (accessed on 10 November 2022).
- Cao, S.; Zhang, S.; Gao, C.; Yan, Y.; Bao, J.; Su, L.; Liu, M.; Peng, N.; Liu, M. A long-term analysis of atmospheric black carbon MERRA-2 concentration over China during 1980–2019. Atm. Environ. 2021, 264, 118662. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Moosmüller, H.; Chakrabarty, R.K.; Arnott, W.P. Aerosol light absorption and its measurement: A review. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 844–878. [Google Scholar] [CrossRef]
- Hansen, J.; Lacis, A.; Ruedy, R.; Sato, M.; Wilson, H. How sensitive is the world’s climate? Natl. Geog. Res. Explor. 1993, 29, 142–158. [Google Scholar]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y.; Duan, F.; Chen, G.; Zhao, Q. Characteristics of PM 2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 2011, 11, 5207–5219. [Google Scholar] [CrossRef]
- Aiken, A.C.; Salcedo, D.; Cubison, M.J.; Huffman, J.A.; DeCarlo, P.F.; Ulbrich, I.M.; Docherty, K.S.; Sueper, D.; Kimmel, J.R.; Worsnop, D.R.; et al. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0)–Part 1: Fine particle composition and organic source apportionment. Atmos. Chem. Phys. 2009, 9, 6633–6653. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prévôt, A.S.H.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Salcedo, D.; Onasch, T.B.; Dzepina, K.; Canagaratna, M.R.; Zhang, Q.; Huffman, J.A.; DeCarlo, P.F.; Jayne, J.T.; Mor-timer, P.; Worsnop, D.R.; et al. Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: Results from the CENICA Super-site. Atmos. Chem. Phys. 2006, 6, 925–946. [Google Scholar] [CrossRef]
- Cao, J.J.; Zhu, C.S.; Chow, J.C.; Watson, J.G.; Han, Y.-M.; Wang, G.-H.; Shen, Z.X.; An, Z.S. Black carbon relationships with emissions and meteorology in Xi’an, China. Atmos. Res. 2009, 94, 194–202. [Google Scholar] [CrossRef]
- Han, S.; Kondo, Y.; Oshima, N.; Takegawa, N.; Miyazaki, Y.; Hu, M.; Lin, P.; Deng, Z.; Zhao, Y.; Sugimoto, N.; et al. Temporal variations of elemental carbon in Beijing. J. Geophys. Res. 2009, 114, D23202. [Google Scholar] [CrossRef]
- Kondo, Y.; Komazaki, Y.; Miyazaki, Y.; Moteki, N.; Takegawa, N.; Kodama, D.; Deguchi, S.; Nogami, M.; Fukuda, M.; Miyakawa, T.; et al. Temporal variations of elemental carbon in Tokyo. J. Geophys. Res. 2006, 111, D12205. [Google Scholar] [CrossRef]
- Ramachandran, S.; Rupakheti, M. Trends in physical, optical, and chemical columnar aerosol characteristics and radiative effects over South and East Asia: Satellite and ground-based observations. Gondwana Res. 2022, 105, 366–387. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G. Global and regional changes climate due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Baumgartner, J.; Zhang, Y.X.; Schauer, J.J.; Huang, W.; Wang, Y.Q.; Ezzati, M. Highway proximity and black carbon from cookstoves as a risk factor for higher blood pressure in rural China. Proc. Natl. Acad. Sci. USA 2014, 111, 13229–13234. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Short-lived climate forcers. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 571–658. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter07_FINAL-1.pdf (accessed on 15 November 2022).
- Melzi, G.; Nozza, E.; Frezzini, M.A.; Canepari, S.; Vecchi, R.; Cremonesi, L.L.; Potenza, M.; Marinovich, M.; Corsini, E. Toxicological Profile of PM from Different Sources in the Bronchial Epithelial Cell Line BEAS-2B. Toxics 2023, 11, 413. [Google Scholar] [CrossRef]
- Steiner, S.; Mueller, L.; Popovicheva, O.B.; Raemy, D.O.; Czerwinski, J.; Comte, P.; Mayer, A.; Gehr, P.; Rothen-Rutishauser, B.; Clift, M.J.D. Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure. Toxicol. Lett. 2012, 214, 218–225. [Google Scholar] [CrossRef]
- Jung, K.H.; Patel, M.M.; Moors, K.; Kinney, P.L.; Chillrud, S.N.; Whyatt, R.; Hoepner, L.; Garfinkel, R.; Yan, B.; Ross, J.; et al. Effects of Heating Season on Residential Indoor and Outdoor Polycyclic Aromatic Hydrocarbons, Black Carbon, and Particulate Matter in an Urban Birth Cohort. Atmos. Environ. 2010, 44, 4545–4552. [Google Scholar] [CrossRef]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health Parth C Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 339–362. [Google Scholar] [CrossRef]
- Pope III, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A. Epidemiology of acute health effects: Summary of time-series. In Particles in Our Air: Concentration and Health Effects; Harvard University Press: Cambridge, MA, USA, 1993; pp. 123–147. [Google Scholar]
- McConnell, R.; Islam, T.; Shankardass, K.; Jerrett, M.; Lurmann, F.; Gilliland, F.; Gauderman, J.; Avol, E.; Künzli, N.; Yao, L.; et al. Childhood incident asthma and traffic-related air pollution at home and school. Environ. Health Perspect. 2010, 118, 1021–1026. [Google Scholar] [CrossRef]
- Steiner, S.; Bisig, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Diesel exhaust: Current knowledge of adverse effects and underlying cellular mechanisms. Arch. Toxicol. 2016, 90, 1541–1553. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.J.; Yan, B.; Chillrud, S.N.; Acosta, L.M.; Divjan, A.; Jacobson, J.S.; Miller, R.L.; Goldstein, I.F.; Perzanowski, M.S. Domestic airborne black carbon levels and 8-isoprostane in exhaled breath condensate among children in New York City. Environ. Res. 2014, 135, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Cornell, A.G.; Chillrud, S.N.; Mellins, R.B.; Acosta, L.M.; Miller, R.L.; Quinn, J.W.; Yan, B.; Divjan, A.; Olmedo, O.E.; Lopez-Pintado, S.; et al. Domestic airborne black carbon and exhaled nitric oxide in children in NYC. J. Expos. Sci. Environ. Epidem. 2012, 22, 258–266. [Google Scholar] [CrossRef]
- Xu, X.; Yang, X.; Zhu, B.; Tang, Z.; Wu, H.; Xie, L. Characteristics of MERRA-2 black carbon variation in east China during 2000–2016. Atmos. Environ. 2019, 222, 117140. [Google Scholar] [CrossRef]
- Manoharan, V.; Kotamarthi, V.; Liao, K. Data Assimilation of CO, and Primary Aerosols (BC) Using the GEOS-Chem Model Based on EaKF Technique. In Proceedings of the American Geophysical Union Fall Meeting 2011, San Francisco, CA, USA, 9 December 2011. [Google Scholar]
- Schuster, G.L.; Dubovik, O.; Holben, B.N.; Clothiaux, E.E. Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals. J. Geophys. Res. 2005, 110, D10S17. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Ou, Y.; Li, Z.; Chen, C.; Zhang, Y.; Li, K.; Shi, Z.; Dong, J.; Xu, H.; Peng, Z.; Xie, Y.; et al. Evaluation of MERRA-2 Aerosol Optical and Component Properties over China Using SONET and PARASOL/ GRASP Data. Remote Sens. 2022, 14, 821. [Google Scholar] [CrossRef]
- Qin, W.; Zhang, Y.; Chen, J.; Yu, Q.; Cheng, S.; Li, W.; Liu, X.; Tian, H. Variation, sources, and historical trend of black carbon in Beijing, China based on ground observation and MERRA-2 reanalysis data. Environ. Pollut. 2018, 245, 853–863. [Google Scholar] [CrossRef]
- Ramachandran, S.; Rupakheti, M.; Lawrence, M. Black carbon dominates the aerosol absorption over the Indo-Gangetic Plains and the Himalayan foothills. Environ. Int. 2020, 142, 105814. [Google Scholar] [CrossRef]
- Zhuravleva, T.B.; Artyushina, A.V.; Vinogradova, A.A.; Voronina, Y.V. Black carbon in the surface air far from the emission sources: Comparison of measurement results and MERRA-2 reanalysis. Opt. Atmos. Okeana 2020, 33, 250–260. [Google Scholar] [CrossRef]
- Vinogradova, A.A.; Kopeikin, V.M.; Vasileva, A.V.; Smirnov, N.S.; Ivanova, Y.A. Concentration of Black Carbon in the Near-Surface Atmosphere in the Pechora-Ilych Natural Reserve: Measurements and Merra-2 Reanalysis. Izv. Atmos. Ocean. Phys. 2020, 56, 1191–1201. [Google Scholar] [CrossRef]
- Sitnov, S.A.; Mokhov, I.I.; Likhosherstova, A.A. Exploring large-scale black-carbon air pollution over Northern Eurasia in summer 2016 using MERRA-2 reanalysis data. Atmos. Res. 2020, 235, 104763. [Google Scholar] [CrossRef]
- Ansari, K.; Ramachandran, S. Aerosol characteristics over Indo-Gangetic Plain from ground-based AERONET and MERRA-2/CAMS model simulations. Atmos. Environ. 2023, 293, 119434. [Google Scholar] [CrossRef]
- Sun, E.; Xu, X.; Che, H.; Tang, Z.; Gui, K.; An, L.; Lu, C.; Shi, G. Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017. J. Atmos. Solar-Terrest. Phys 2019, 186, 8–19. [Google Scholar] [CrossRef]
- Song, Z.; Fu, D.; Zhang, X.; Wu, Y.; Xia, X.; He, J.; Han, X.; Zhang, R.; Che, H. Diurnal, and seasonal variability of PM2.5 and AOD in North China plain: Comparison of MERRA-2 products and ground measurements. Atmos. Environ 2018, 191, 70–78. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Lacis, A.; Oinas, V. Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. USA 2000, 97, 9875–9880. [Google Scholar] [CrossRef]
- Targino, A.C.; Krecl, P.; Oukawa, G.Y.; Mollinedo, E.M. A short climatology of black and brown carbon and their sources at a suburban site impacted by smoke in Brazil. J. Environ. Sci. 2023, 136, 498–511. [Google Scholar] [CrossRef]
- Krecl, P.; Oukawa, G.Y.; Charres, I.; Targino, A.C.; Grauer, A.F.; Cavalcanti e Silva, D. Compilation of a city-scale black carbon emission inventory: Challenges in developing countries based on a case study in Brazil. Sci. Total Environ. 2022, 839, 156332. [Google Scholar] [CrossRef]
- Blanco-Donado, E.P.; Schneider, I.L.; Artaxo, P.; Lozano-Osorio, J.; Portz, L.; Oliveira, M.L.S. Source identification and global implications of black carbon. Geosci. Front. 2022, 13, 101149. [Google Scholar] [CrossRef]
- Reyes, F.; Ahumada, S.; Rojas, F.; Oyola, P.; Vásquez, Y.; Aguilera, C.; Henriquez, A.; Gramsch, E.; Kang, C.M.; Saarikoski, S.; et al. Impact of Biomass Burning on Air Quality in Temuco City, Chile. Aerosol Air Qual. Res. 2021, 21, 210110. [Google Scholar] [CrossRef]
- Gramsch, E.; Muñoz, A.; Langner, J.; Morales, L.; Soto, C.; Pérez, P.; Rubio, M.A. Black carbon transport between Santiago de Chile and glaciers in the Andes Mountains. Atmos. Environ. 2020, 232, 117546. [Google Scholar] [CrossRef]
- Servicio Nacional de Meteorología e Hidrología del Peru (SENAMHI). Climas del Peru: Mapa de Clasificación Climática Nacional, 2021, 1era. Ed. August 2021. Available online: www.gob.pe/senamhi (accessed on 15 December 2022).
- Narvaez-Montoya, C.; Torres-Martínez, J.A.; Pino-Vargas, E.; Cabrera-Olivera, F.; Loge, F.J.; Mahlknecht, J. Predicting adverse scenarios for a transboundary coastal aquifer system in the Atacama Desert (Peru/Chile). Sci. Total Environ. 2022, 806, 150386. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística e Informática (INEI). Peru: Estimaciones y Proyecciones de Población por Departamento. Provincia y Distrito, 2018–2020. 2020, Boletín Especial N° 26, January 2020. Available online: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1715/ (accessed on 15 December 2022).
- Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Yang, K.; Levelt, P.F. Sulfur dioxide emissions from Peruvian copper smelters detected by the Ozone Monitoring Instrument. Geophys. Res. Lett. 2007, 34, L09801. [Google Scholar] [CrossRef]
- Houston, J. Variability of precipitation in the Atacama Desert: Its causes and Hidrological impact. Int. J. Climatol. 2006, 26, 2181–2198. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Peters, M.E.; Back, L.E. Relationships between Water Vapor Path and precipitation over the Tropical Oceans. J. Am. Meteorol. Soc. 2004, 17, 1517–1528. [Google Scholar] [CrossRef]
- Klein, S.A.; Hartmann, D.L. The seasonal Cycle of Low Stratiform Clouds. J. Am. Meteorol. Soc. 1993, 6, 1578–1606. [Google Scholar] [CrossRef]
- Retama, A.; Baumgardner, D.; Raga, G.B.; McMeeking, G.R.; Walker, J.W. Seasonal and diurnal trends in Black Carbon properties and co-Pollutants in Mexico City. J. Atmos. Chem. Phys. 2015, 15, 9693–9709. [Google Scholar] [CrossRef]
- Paredes-Miranda, G.; Arnott, W.P.; Jimenez, J.L.; Aiken, A.C.; Gaffney, J.S.; Marley, N.A. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign. Atmos. Chem. Phys. 2009, 9, 3721–3730. [Google Scholar] [CrossRef]
- Arnott, W.P.; Moosmüller, H.; Rogers, C.F.; Jin, T.; Bruch, R. Photoacoustic spectrometer for measuring light absorption by aerosols: Instrument description. Atmos. Environ. 1999, 33, 2845–2852. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, R.W. Light Absorption by carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 onward. Part I: System Description and Data Assimilation Evaluations. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef] [PubMed]
- Buchard, V.; Randles, C.A.; da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 Aerosol Reanalysis, 1980 onward. Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef] [PubMed]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display System: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Ming, J. Aerosol Optical Properties Measurement Using a PAX in Central Asia from 2016 to 2019 and the Climatic and Environment Outlooks. ACS Earth Space Chem. 2021, 5, 95–105. [Google Scholar] [CrossRef]
- Gebhart, K.A.; Schichtel, B.A.; Malm Barna, M.G.; Rodriguez, M.A.; Collett, J.L. Back-trajectory-based source apportionment of airborne sulfur and nitrogen concentrations at Rocky Mountain National Park, Colorado, USA. Atmos. Environ. 2011, 45, 621–633. [Google Scholar] [CrossRef]
- Zora Carbajal, F. Tacna Historia y Folklore, 2nd ed.; Editorial Santa Mara: Tacna, Peru, 1969. [Google Scholar]
- Buchard, V.; da Silva, A.M.; Randles, C.A.; Colarco, P.R.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D. Evaluation of the surface PM 2.5 in version 1 of the NASA MERRA Aerosol Reanalysis over the United States. Atmos. Environ. 2016, 125, 100–111. [Google Scholar] [CrossRef]
- Buchard, V.; da Silva, A.M.; Colarco, P.R.; Darmenov, A.; Randles, C.A.; Govindaraju, R.; Torres, O.; Campbell, J.; and Spurr, R. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis. Atmos. Chem. Phys. 2015, 15, 5743–5760. [Google Scholar] [CrossRef]
- Li, C.; McLinden, C.; Fioletov, V.; Krotkov, N.; Carn, S.; Joiner, J.; Streets, D.; He, H.; Ren, X.; Li, Z.; et al. India Is Overtaking China as the world’s Larger Emitter of Anthropogenic Sulfur Dioxide. Sci. Rep. 2017, 7, 14304. [Google Scholar] [CrossRef]
- Pan, L.; Che, H.; Geng, F.; Xia, X.; Wang, Y.; Zhu, C.; Chen, M.; Gao, W.; Guo, J. Aerosol optical properties based on ground measurements over the Chinese Yangtze delta Region. Atmos. Environ. 2010, 44, 2587–2596. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of satellite observations for long term exposure assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 2015, 123, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Rupakheti, M.; Cherian, R. Insights into recent aerosol trends over Asia: From observations and CMIP6 simulations. Sci. Total Environ. 2022, 807, 150756. [Google Scholar] [CrossRef] [PubMed]
- Liñán-Abanto, R.N.; Salcedo, D.; Arnott, P.; Paredes-Miranda, L.; Grutter, M.; Peralta, O.; Carabali, G.; Serrano-Silva, N.; Ruiz-Suárez, L.G.; Castro, T. Temporal variations of black carbon, carbon monoxide, and carbon dioxide in Mexico City: Mutual Correlations and evaluation of emissions inventories. Urban Clim. 2021, 37, 100855. [Google Scholar] [CrossRef]
- Zhang, X.; Rao, R.; Huang, Y.; Mao, M.; Berg, M.J.; Sun, W. Black carbon aerosols in urban central China. J. Quant. Spectrosc. Radiat. Transfer. 2015, 150, 3–11. [Google Scholar] [CrossRef]
- Zhuang, B.L.; Wang, T.J.; Liu, J.; Li, S.; Xie, M.; Yang, X.Q.; Fu, C.B.; Sun, J.N.; Yin, C.Q.; Liao, J.B.; et al. Continuous measurement of black carbon aerosol in urban Nanjing of Yangtze River Delta, China. Atmos. Environ. 2014, 89, 415–424. [Google Scholar] [CrossRef]
- Liñán-Abanto, R.N.; Peralta, O.; Salcedo, D.; Ruiz-Suárez, L.G.; Arnott, P.; Paredes-Miranda, L.; Alvarez-Ospina, H.; Castro, T. Optical properties of atmospheric particles over an urban site Mexico City and a peri-urban site in Queretaro. J. Atmos. Chem. 2019, 76, 201–228. [Google Scholar] [CrossRef]
- Qin, Y.; Xie, S. Spatial and temporal variation of anthropogenic black carbon emissions in China for the period 1980–2009. Atmos. Chem. Phys. 2012, 12, 4825–4841. [Google Scholar] [CrossRef]
- He, X.; Li, C.C.; Lau, A.K.H.; Deng, Z.Z.; Mao, J.T.; Wang, M.H.; Liu, X.Y. An intensive study of aerosol optical properties in Beijing urban area. Atmos. Chem. Phys. 2009, 9, 8903–8915. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Hollander, M.; Wolfe, D.A. Nonparametric Statistical Methods; John Wiley & Sons: New York, NY, USA, 1973. [Google Scholar]
- Salmi, T.; Maata, A.; Antilla, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates-The Excel Template Application MAKENSENS; FIN-00101; Finnish Meteorological Institute, Publications on Air Quality: Helsinki, Finland, 2002; p. 31. [Google Scholar]
Meteorological Variables | Period | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
Temperature (°C) | 2020 | 19.04 | 21.52 | 17.57 | 13.58 |
2021 | 16.40 | 20.62 | 16.76 | 13.07 | |
2020–2021 | 16.92 | 21.06 | 17.12 | 13.24 | |
2020 | 74.65 | 73.71 | 80.60 | 81.94 | |
Relative humidity (%) | 2021 | 78.83 | 71.26 | 79.86 | 85.66 |
2020–2021 | 77.44 | 72.46 | 80.03 | 82.94 | |
2020 | 2.04 | 1.89 | 1.60 | 1.63 | |
Wind speed (m s−1) | 2021 | 1.96 | 1.92 | 1.66 | 1.57 |
2020–2021 | 1.97 | 1.91 | 1.63 | 1.60 | |
2020 | 214.03 | 233.56 | 187.45 | 159.22 | |
Solar irradiance (W m−2) | 2021 | 203.96 | 267.72 | 169.01 | 124.27 |
2020–2021 | 207.24 | 250.99 | 175.90 | 142.45 |
Black Carbon | Statistics | Seasons | |||
---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | ||
BC-PAX (µg m−3) | Minimum | 0.17 | 0.06 | 0.21 | 0.15 |
Mean | 0.70 | 0.73 | 0.70 | 0.85 | |
Median | 0.66 | 0.64 | 0.60 | 0.79 | |
Stand. Dev. | 0.35 | 0.46 | 0.39 | 0.46 | |
Maximum | 5.94 | 11.00 | 5.13 | 6.14 | |
BC-MERRA2 (µg m−3) | Minimum | 0.00 | 0.03 | 0.03 | 0.03 |
Mean | 0.12 | 0.06 | 0.06 | 0.11 | |
Median | 0.09 | 0.06 | 0.06 | 0.09 | |
Stand. Dev. | 0.11 | 0.02 | 0.02 | 0.06 | |
Maximum | 1.35 | 0.13 | 0.12 | 0.46 |
Period (Week) | Statistics of Mann–Kendall Test | PAX BC (µg m−3) | MERRA-2 BC (µg m−3) | ||||
---|---|---|---|---|---|---|---|
Pre-Start Lockdown | Post-Start Lockdown | Decreased (%) | Pre-Start Lockdown | Post-Start Lockdown | Decreased (%) | ||
Mean | 0.745 | 0.523 | 30 | 0.077 | 0.0608 | 21 | |
Slope (m) | 0.0246 | −0.0057 | 0.0023 | 0.0017 | |||
Two | A | 0.05 | 0.05 | 0.05 | 0.05 | ||
S | 43 | −13 | 43 | 25 | |||
Z | 2.299 | −2.299 | 2.299 | 1.3138 | |||
ZP | 1.645 | 1.96 | 1.645 | 1.96 | |||
Trend | Upward | Downward | Upward | No | |||
Mean | 0.838 | 0.531 | 37 | 0.0856 | 0.0527 | 38 | |
Slope (m) | −0.0236 | −0.0338 | −0.0013 | −0.0013 | |||
One | A | 0.05 | 0.05 | 0.05 | 0.05 | ||
S | −7 | −17 | −7 | −5 | |||
P.V. | 0.191 | 0.0054 | 0.191 | 0.281 | |||
Trend | No | Downward | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liñán-Abanto, R.N.; Arnott, W.P.; Paredes-Miranda, G.; Ramos-Pérez, O.; Salcedo, D.; Torres-Muro, H.; Liñán-Abanto, R.M.; Carabali, G. Black Carbon in a City of the Atacama Desert before and after the Start of the COVID-19 Lockdown: Ground Measurements and MERRA-2 Reanalysis. Remote Sens. 2023, 15, 4702. https://doi.org/10.3390/rs15194702
Liñán-Abanto RN, Arnott WP, Paredes-Miranda G, Ramos-Pérez O, Salcedo D, Torres-Muro H, Liñán-Abanto RM, Carabali G. Black Carbon in a City of the Atacama Desert before and after the Start of the COVID-19 Lockdown: Ground Measurements and MERRA-2 Reanalysis. Remote Sensing. 2023; 15(19):4702. https://doi.org/10.3390/rs15194702
Chicago/Turabian StyleLiñán-Abanto, Rafael N., William Patrick Arnott, Guadalupe Paredes-Miranda, Omar Ramos-Pérez, Dara Salcedo, Hugo Torres-Muro, Rosa M. Liñán-Abanto, and Giovanni Carabali. 2023. "Black Carbon in a City of the Atacama Desert before and after the Start of the COVID-19 Lockdown: Ground Measurements and MERRA-2 Reanalysis" Remote Sensing 15, no. 19: 4702. https://doi.org/10.3390/rs15194702
APA StyleLiñán-Abanto, R. N., Arnott, W. P., Paredes-Miranda, G., Ramos-Pérez, O., Salcedo, D., Torres-Muro, H., Liñán-Abanto, R. M., & Carabali, G. (2023). Black Carbon in a City of the Atacama Desert before and after the Start of the COVID-19 Lockdown: Ground Measurements and MERRA-2 Reanalysis. Remote Sensing, 15(19), 4702. https://doi.org/10.3390/rs15194702