Environmental Characteristics of High Ice-Content Permafrost on the Qinghai–Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Classification System for Ground Ice
2.2. Source of High Ice-Content Permafrost Data
2.3. Remote Sensing Data Products
2.4. Methodology for Indicators
2.5. Systematic Cluster Analyses
3. Results
3.1. Temperature Characteristics
3.2. Moisture Characteristics
3.3. Geomorphological Feature
3.4. Soil Characteristics
3.5. Regional Vegetation Changes
3.6. Environmental Commonalities
4. Discussion
4.1. Higher Warming and Wetting Trends in High Ice-Content Permafrost Regions
4.2. The Combined Effects of Environmental Factors Affecting High Ice-Content Permafrost
4.3. Indicators of High Ice-Content Permafrost Distribution
4.4. High Ice-Content Areas Will Experience Significant Environmental Changes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, T.; Barry, R.; Knowles, K.; Ling, F.; Armstrong, R. Statistics and characteristics of permafrost and ground-ice distribution in the northern hemisphere. Polar Geogr. 2008, 31, 47–68. [Google Scholar] [CrossRef]
- Ran, Y.; Cheng, G.; Dong, Y.; Jin, H.; Yang, J. Permafrost degradation increases risk and large future costs of infrastructure on the Third Pole. Nat. Commun. Earth Environ. 2022, 3, 238. [Google Scholar] [CrossRef]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Bolch, T.; Chen, D.; Duan, K.; Fang, X.; Su, F.; Thompson, L.; Wada, Y.; Wang, L.; Wang, T.; et al. The imbalance of the Asian Water Tower. Nat. Rev. Earth Environ. 2022, 3, 289–304. [Google Scholar] [CrossRef]
- Wang, T.; Yang, D.; Yang, Y.; Piao, S.; Li, X.; Cheng, G.; Fu, B. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 2020, 6, eaaz3513. [Google Scholar] [CrossRef]
- Chen, L.; Liang, J.; Qin, S.; Yu, W.; Wei, X.; Wang, G. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat. Commun. 2016, 7, 13046. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, L.; Li, R.; Wu, T. Characteristics, changes and impacts of permafrost on the Qinghai-Tibet Plateau. Chin. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar]
- Ma, W.; Niu, F.; Mu, Y. Fundamental researches for major permafrost engineering on Qinghai-Tibet Plateau. Adv. Earth Sci. 2012, 27, 1185–1191. [Google Scholar]
- Chen, L.; Yu, W.B.; Han, F.L.; Lu, Y.; Zhang, T.Q. Effects of desertification on permafrost environment in Qinghai-Tibetan Plateau. J. Environ. Manag. 2020, 262, 110302. [Google Scholar] [CrossRef] [PubMed]
- Grosse, G.; Goetz, S.; McGuire, A.D.; Romanovsky, V.E.; Schuur, E.A.G. Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 2016, 11, 040201. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, X.; Liu, D.; Lv, G.; Ren, S.; Ding, J.; Chen, B.; Qu, J.; Wang, Y.; Piao, S.; et al. The current and future of terrestrial carbon balance over the Tibetan Plateau. Sci. China Earth Sci. 2023, 66, 595–608. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Burn, C.R. Near-surface ground ice in sediments of the Mackenzie Delta, Northwest Territories, Canada. Permafr. Periglac. Process. 2005, 16, 291–303. [Google Scholar] [CrossRef]
- Morse, P.D.; Burn, C.R.; Kokelj, S.V. Near-surface ground-ice distribution, Kendall Island Bird Sanctuary, western Arctic coast, Canada. Permafr. Periglac. Process. 2009, 20, 155–171. [Google Scholar] [CrossRef]
- Mackay, J.R.; Burn, C.R. The first 20 years (1978–1979 to 1998–1999) of active-layer development, Illisarvik experimental drained lake site, western Arctic coast, Canada. Can. J. Earth Sci. 2002, 39, 1657–1674. [Google Scholar] [CrossRef]
- O’Neill, B. The Development of Near-Surface Ground Ice at Illisarvik, Richards Island, Northwest Territories. Ph.D. Thesis, Carleton University, Ottawa, ON, Canada, 2011. [Google Scholar]
- Burn, C.R.; Kokelj, S.V. The environment and permafrost of the Mackenzie Delta area. Permafr. Periglac. Process. 2010, 20, 83–105. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, L. The influence of local factors on the distribution of permafrost and its implications for the design of the Qinghai-Tibet Railway. Sci. China Ser. D-Earth Sci. 2003, 33, 602–607. (In Chinese) [Google Scholar]
- Zhao, L.; Ding, Y.; Liu, G.; Wei, L.; Guo, T.; Wang, Z. Estimation and assessment of underground ice reserves in the permafrost of the Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2010, 32, 1–9. (In Chinese) [Google Scholar]
- Wang, W.; Wu, T.; Chen, Y.; Li, R.; Xie, C.; Qiao, Y.; Zhu, X.; Hao, J.; Ni, J. Spatial variations and controlling factors of ground ice isotopes in permafrost areas of the central Qinghai-Tibet Plateau. Sci. Total Environ. 2019, 688, 542–554. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.; Hou, Y.; Zhang, Z.; Zhan, J.; Gao, S.; Jin, H. Unraveling of permafrost hydrological variabilities on Central Qinghai-Tibet Plateau using stable isotopic technique. Sci. Total Environ. 2017, 605–606, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wu, Q.; Jiang, G.; Zhang, P. Stable Isotopic Stratification and Growth Patterns of Ground Ice in Permafrost on the Qinghai-Tibet Plateau, China. Permafr. Periglac. Process. 2017, 28, 119–129. [Google Scholar]
- Yang, Y.; Wu, Q.; Yun, H. Stable isotope variations in the ground ice of Beiluhe Basin on the Qinghai-Tibet Plateau. Quat. Int. 2013, 313–314, 85–91. [Google Scholar]
- Lin, Z.; Gao, Z.; Fan, X.; Niu, F.; Luo, J.; Yin, G.; Liu, M. Factors controlling near surface ground-ice characteristics in a region of warm permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Geoderma 2020, 376, 114540. [Google Scholar] [CrossRef]
- Fan, X.; Lin, Z.; Gao, Z.; Meng, X.; Niu, F.; Luo, J.; Yin, G.; Zhou, F.; Lan, A. Investigation into cryostructures and ground ice content in ice-rich permafrost area of the Qinghai-Tibet Plateau with CT scanning. J. Mountain Sci. 2021, 18, 1028–1221. [Google Scholar] [CrossRef]
- Li, X.; Jin, X.; Wang, X.; Jin, H.; Zhang, S. Investigation of permafrost engineering geological environment with electrical resistivity tomography: A case study along the china-russia crude oil pipelines. Eng. Geol. 2021, 291, 106237. [Google Scholar] [CrossRef]
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Climate change and hazard zonation in the circum-arctic permafrost regions. Nat. Hazards 2002, 26, 203–225. [Google Scholar] [CrossRef]
- Chadburn, S.E.; Burke, E.J.; Cox, P.M.; Friedlingstein, P.; Hugelius, G.; Westermann, S. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Chang. 2017, 7, 340–344. [Google Scholar] [CrossRef]
- Trochim, E.D.; Schnabel, W.E.; Kanevskiy, M.; Munk, J.; Shur, Y. Geophysical and cryostratigraphic investigations for road design in northern Alaska. Cold Reg. Sci. Technol. 2016, 131, 24–38. [Google Scholar] [CrossRef]
- Lacelle, D.; Fisher, D.A.; Verret, M.; Pollard, W. Improved prediction of the vertical distribution of ground ice in Arctic-Antarctic permafrost sediments. Commun. Earth Environ. 2022, 3, 31. [Google Scholar] [CrossRef]
- Murton, J.B. Ground ice and cryostratigraphy. In Treatise on Geomorphology; Shroder, J., Giardino, R., Harbor, J., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 8, pp. 173–201. [Google Scholar]
- Kokelj, S.V.; Lantz, T.C.; Tunnicliffe, J.; Segal, R.; Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 2017, 45, 371–374. [Google Scholar] [CrossRef]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: An example from the Beiluhe Region. Geomorphology 2019, 341, 79–85. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.-L.; Song, X.; Shi, Z.; Zhu, A.-X.; Zhang, G.-L. Mapping high resolution National Soil Information Grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, G.L.; Song, X.D.; Li, D.C.; Zhao, Y.G.; Yang, J.L.; Wu, H.Y.; Yang, F. High-resolution and three-dimensional mapping of soil texture of China. Geoderma 2020, 361, 114061. [Google Scholar] [CrossRef]
- Weiss, A. Topographic position and Landforms Analysis. Poster presentation. In Proceedings of the ESRI User Conference, San Diego, CA, USA, 9–13 July 2001. [Google Scholar]
- Schillaci, C.; Braun, A.; Kropácek, J. Terrain analysis and landform recognition. In Geomorphological Techniques (Online Edition); Clarke, N.E., Nield, J.M., Eds.; British Society for Geomorphology: London, UK, 2015. [Google Scholar]
- Beven, K.; Kirkby, M.J. A Physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar]
- Jongman, R.H.G.; Ter Braak, C.J.F.; Van Tongeren, O.F.R. Data analysis in community and landscape ecology: Cluster analysis. Biometrics 1995, 46, 91–173. [Google Scholar]
- IPCC. Climate Change 2022: Mitigation of Climate Change (Summary for Policymakers) [M/OL]. 2022. Available online: https://www.ipcc.ch/report/ar6/wg3/#FullReport (accessed on 4 April 2022).
- Wang, Z.; Yuan, J.; Pang, B.; Huang, L. The interpretation and highlights on mitigation of climate change in IPCC AR6 WGIII report. Adv. Clim. Chang. Res. 2022, 18, 531–537. Available online: http://www.climatechange.cn/CN/Y2022/V18/I5/531 (accessed on 3 August 2023). [CrossRef]
- Burke, K.D.; Williams, J.W.; Chandler, M.A.; Haywood, A.M.; Lunt, D.J.; Otto-Bliesner, B.L. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl. Acad. Sci. USA 2018, 115, 13288–13293. [Google Scholar] [CrossRef]
- Thoman, R.L.; Richter-Menge, J.; Druckmiller, M.L. Arctic Report Card 2020. Available online: https://arctic.noaa.gov/Report-Card/Report-Card-2020 (accessed on 3 August 2023).
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Yao, T.; Chen, F.; Cui, P.; Ma, Y.; Xu, B.; Zhu, L.; Zhang, F.; Wang, W.; Ai, L.; Yang, X. From the Tibetan Plateau to the Third Pole and Pan-Third Pole. Bull. Chin. Acad. Sci. 2017, 32, 924–931. [Google Scholar]
- Feng, S.; Tang, M.; Wang, D. New evidence that the Tibetan Plateau is the starting point of climate change in China. Chinese Sci. Bull. 1998, 43, 633–636. [Google Scholar]
- Pan, B.; Li, J. The Tibetan Plateau: A driving force and amplifier of global climate change—Part III: The impact of uplift of the Qinghai-Tibetan Plateau on climate change. J. Lanzhou Univ. 1996, 32, 108–115. [Google Scholar]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Duan, A.; Xiao, Z. Does the climate warming hiatus exist over the Tibetan Plateau? Sci. Rep. 2015, 5, 13711. [Google Scholar] [CrossRef]
- French, H.M. The Periglacial Environment; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Harris, S.A.; Brouchkov, A.; Cheng, G. Geocryology; Taylor and Francis Group: London, UK, 2017. [Google Scholar]
- Williams, P.J.; Smith, M.W. The Frozen Earth. Fundamentals of Geocryology; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Wang, J.; Wang, S.; Qiu, G. The permafrost along the Qinghai-Tibet Highway. Acta Geogr. Sin. 1979, 14, 18–32. [Google Scholar]
- Peddle, D.R.; Franklin, S.E. Classification of permafrost active layer depth from remotely sensed and topographic evidence. Remote Sens. Environ. 1993, 44, 67–80. [Google Scholar] [CrossRef]
- Lara, M.J.; McGuire, A.D.; Euskirchen, E.S.; Tweedie, C.E.; Hinkel, K.M.; Skurikhin, A.N.; Romanovsky, V.E.; Grosse, G.; Bolton, W.R.; Genet, H. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Global Chang. Biol. 2015, 21, 1634–1651. [Google Scholar] [CrossRef]
- Wainwright, H.M.; Dafflon, B.; Smith, L.J.; Hahn, M.S.; Curtis, J.B.; Wu, Y.; Ulrich, C.; Peterson, J.E.; Torn, M.S.; Hubbard, S.S. Identifying multiscale zonation and assessing the relative importance of polygon geomorphology on carbon fluxes in an Arctic tundra ecosystem. J. Geophys. Res. Biogeosci. 2015, 120, 788–808. [Google Scholar] [CrossRef]
- Ishikawa, M.; Sharkhuu, N.; Zhang, Y.; Kadota, T.; Ohata, T. Ground thermal and moisture conditions at the southern boundary of discontinuous permafrost, Mongolia. Permafrost Periglac. Process. 2010, 16, 209–216. [Google Scholar] [CrossRef]
- Gilbert, G.; Kanevskiy, M.; Murton, J.B. Recent advances (2008–2015) in the study of ground ice and cryostratigraphy. Permafrost Periglac. Process. 2016, 27, 377–389. [Google Scholar] [CrossRef]
- Burt, T.P.; Williams, P.J. Hydraulic conductivity in frozen soils. Earth Surf. Process. 1976, 1, 349–360. [Google Scholar] [CrossRef]
- Ni, J.; Wu, T.; Zhu, X.; Li, S.; Zhang, M.; Miao, Y. Simulation of the present and future projection of permafrost on the Qinghai-Tibet Plateau with statistical and machine learning models. J. Geophys. Res. Atmos. 2021, 126, e2020JD033402. [Google Scholar] [CrossRef]
- Zhang, G.; Nan, Z.; Hu, N.; Li, X.; Wang, W.; Yu, Q. Qinghai-Tibet Plateau permafrost at risk in the late 21st century. Earth’s Future 2022, 10, e2022EF002652. [Google Scholar] [CrossRef]
- Slater, A.G.; Lawrence, D.M. Diagnosing present and future permafrost from climate models. J. Clim. 2013, 26, 5608–5623. [Google Scholar] [CrossRef]
- Koven, C.D.; Riley, W.J.; Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Clim. 2013, 26, 1877–1900. [Google Scholar] [CrossRef]
- Lu, Q.; Zhao, D.; Wu, S. Simulated responses of permafrost distribution to climate change on the Qinghai-Tibet Plateau. Sci. Rep. 2017, 7, 3845. [Google Scholar] [CrossRef]
- Romanovsky, V.; Smith, S.L.; Isaksen, K.; Streletskiy, D. Terrestrial permafrost. Bull. Am. Meteorol. Soc. 2018, 99, S161–S165. [Google Scholar]
- Streletskiy, D.A.; Clemens, S.; Lanckman, J.P.; Shiklomanov, N.I.; Nyland, K.E. The costs of Arctic infrastructure damages due to permafrost degradation. Environ. Res. Lett. 2023, 18, 015006. [Google Scholar] [CrossRef]
- Maslakov, A.A.; Nyland, K.E.; Komova, N.N.; Shiklomanov, N.I.; Pochatuk, A.V.; Streletskiy, D.A. Community ice cellars in eastern Chukotka: Climatic and anthropogenic influences on structural stability. Geogr. Environ. Sustain. 2020, 13, 49–56. [Google Scholar] [CrossRef]
- Nyland, K.E.; Klene, A.E.; Brown, J.; Streletskiy, D.A.; Romanovsky, V.E.; Shiklomanov, N.I. Traditional Inupiat ice cellars (SIĠḷUAQ) in Barrow, Alaska: Characteristics, temperature monitoring, and distribution. Geogr. Rev. 2017, 107, 143–158. [Google Scholar] [CrossRef]
- Puchkov, A.V.; Yakovlev, E.Y.; Hasson, N.; Shiklomanov, N.I.; Streletskiy, D.A. Radonhazard in permafrost conditions: Current state of research. Geogr. Environ. Sustain. 2021, 4, 93–104. [Google Scholar] [CrossRef]
- Revich, B.A.; Eliseev, D.O.; Shaposhnikov, D.A. Risks for public health and social infrastructure in Russian Arctic under climate change and permafrost degradation. Atmosphere 2022, 13, 532. [Google Scholar] [CrossRef]
- Schaefer, K.; Elshorbany, Y.; Jafarov, E.; Chen, G.; Gusmeroli, A.; Murray, A.; Zhong, L.; McCalley, C.K.; Vogel, J.G.; Monaghan, A.J.; et al. Potential impacts of mercury released from thawing permafrost. Nat. Commun. 2020, 11, 4650. [Google Scholar] [CrossRef]
Classification | iv, % 1 | Visual Characterization | Ice Characteristics |
---|---|---|---|
Ice-poor permafrost | iv ≤ 12% | Ice layer is not visible to the naked eye | Poor cohesion, is fragile, and lacks excess ice, thus not melting and sinking |
Icy permafrost | 12% < iv ≤ 18% | Occasionally, micro ice lenses or small ice particles can be seen | Ice film around the particles, indicating weak melting and sinking |
Ice-rich permafrost | 18% < iv ≤ 25% | Unevenly distributed ice lenses and thin ice layers | Irregularly oriented ice bands indicate melting and sinking |
Sediment-rich permafrost | 25% < iv ≤ 44% | Ice and soil are generally distributed separately | Clearly oriented ice bands indicate strong melting and sinking |
Sediment-poor permafrost or pure ice | iv > 44% | A large amount of visible ice | Ice-rich layers or pure ice layers, resulting in melting and subsidence. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Wang, Y.; Niu, F.; Li, W.; Wu, X.; Ding, Z.; Pang, W.; Lin, Z. Environmental Characteristics of High Ice-Content Permafrost on the Qinghai–Tibetan Plateau. Remote Sens. 2023, 15, 4496. https://doi.org/10.3390/rs15184496
Fan X, Wang Y, Niu F, Li W, Wu X, Ding Z, Pang W, Lin Z. Environmental Characteristics of High Ice-Content Permafrost on the Qinghai–Tibetan Plateau. Remote Sensing. 2023; 15(18):4496. https://doi.org/10.3390/rs15184496
Chicago/Turabian StyleFan, Xingwen, Yanhe Wang, Fujun Niu, Wenjiao Li, Xuyang Wu, Zekun Ding, Wenlong Pang, and Zhanju Lin. 2023. "Environmental Characteristics of High Ice-Content Permafrost on the Qinghai–Tibetan Plateau" Remote Sensing 15, no. 18: 4496. https://doi.org/10.3390/rs15184496
APA StyleFan, X., Wang, Y., Niu, F., Li, W., Wu, X., Ding, Z., Pang, W., & Lin, Z. (2023). Environmental Characteristics of High Ice-Content Permafrost on the Qinghai–Tibetan Plateau. Remote Sensing, 15(18), 4496. https://doi.org/10.3390/rs15184496