Study on Local Power Plant Emissions Using Multi-Frequency Differential Absorption LIDAR and Real-Time Plume Tracking
Abstract
:1. Introduction
2. Materials and Methods
2.1. DIAL System
2.2. Gaussian Plume Model and Tracking
2.3. Comparison with EPED Emission Data
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Gaussian Plume Model
Variable | Value | Source |
---|---|---|
Stack temperature | 393 K | Performance sheet |
Stack exit velocity | 12 m/s | Performance sheet |
Stack radius | 0.61 m | Performance sheet |
Boiler efficiency | 83.5% | Performance sheet |
Methane ratio | 77.2% | Performance sheet |
Ethane ratio | 7.0% | Performance sheet |
Propane ratio | 1.5% | Performance sheet |
Could cover | <40% | Observation |
Cloud base | <2 km | Observation |
Temperature stability | 6 K/km | Observation |
References and Note
- Hertel, T.W.; Rose, S.K.; Tol, R.S. (Eds.) Economic Analysis of Land Use in Global Climate Change Policy; Routledge: New York, NY, USA, 2009; Volume 14. [Google Scholar]
- Gimmestad, G.G. Differential-Absorption Lidar for Ozone and Industrial Emissions; Springer: New York, NY, USA, 2005. [Google Scholar]
- Orr, B.J. Infrared LIDAR applications in atmospheric monitoring. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; New York, NY, USA: Wiley, 2006; pp. 1–9. [Google Scholar]
- Ehret, G.; Bousquet, P.; Pierangelo, C.; Alpers, M.; Millet, B.; Abshire, J.B.; Bovensmann, H.; Burrows, J.P.; Chevallier, F.; Ciais, P.; et al. MERLIN: A French-German Space Lidar Mission Dedicated to Atmospheric Methane. Remote Sens. 2017, 9, 1052. [Google Scholar]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar]
- Lin, J.C.; Gerbig, C.; Wofsy, S.C.; Andrews, A.E.; Daube, B.C.; Grainger, C.A.; Stephens, B.B.; Bakwin, P.S.; Hollinger, D.Y. Measuring fluxes of trace gases at regional scales by Lagrangian observations: Application to the CO2Budget and Rectification Airborne (COBRA) study. J. Geophys. Res. Atmos. 2004, 109, D15304. [Google Scholar] [CrossRef]
- Thoma, E.D.; Shores, R.C.; Thompson, E.L.; Harris, D.B.; Thorneloe, S.A.; Varma, R.M.; Hashmonay, R.A.; Modrak, M.T.; Natschke, D.F.; Gamble, H.A. Open-Path Tunable Diode Laser Absorption Spectroscopy for Acquisition of Fugitive Emission Flux Data. J. Air Waste Manag. Assoc. 2005, 55, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Hashmonay, R.A.; Yost, M.G.; Mamane, Y.; Benayahu, Y. Emission rate apportionment from fugitive sources using open-path FTIR and mathematical inversion. Atmos. Environ. 1999, 33, 735–743. [Google Scholar] [CrossRef]
- Robinson, R.A.; Gardiner, T.D.; Innocenti, F.; Finlayson, A.; Woods, P.T.; Few, J.F.M. First measurements of a carbon dioxide plume from an industrial source using a ground based mobile differential absorption lidar. Environ. Sci. Process. Impacts 2014, 16, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Yue, B.; Yu, S.; Li, M.; Wei, T.; Yuan, J.; Zhang, Z.; Dong, J.; Jiang, Y.; Yang, Y.; Gao, Z.; et al. Local-Scale Horizontal CO2 Flux Estimation Incorporating Differential Absorption Lidar and Coherent Doppler Wind Lidar. Remote Sens. 2022, 14, 5150. [Google Scholar] [CrossRef]
- Stroud, J.R.; Plusquellic, D.F. Range resolved CO2 measurements over 3 km using a 10-point fiber-based differential-absorption LIDAR (DIAL) system. In CLEO: Applications and Technology; Optica Publishing Group: Washington, DC, USA, 2022; p. AM2K-3. [Google Scholar]
- Wagner, G.A.; Plusquellic, D.F. Plusquellic. Multi-frequency differential absorption LIDAR system for remote sensing of CO2 and H2O near 1.6 µm. Opt. Express 2018, 26, 19420–19434. [Google Scholar] [CrossRef] [PubMed]
- Univrsity of Colorado (CU) East District Energy Plant (EDEP). Available online: https://www.colorado.edu/fmenergy/contacts (accessed on 13 April 2023).
- Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose
- Turner, D.B. A diffusion model for an urban area. J. Appl. Meteorol. Climatol. 1964, 3, 83–91. [Google Scholar] [CrossRef]
- Briggs, G.A. Some Recent Analyses of Plume Rise Observations. Available online: https://repository.library.noaa.gov/view/noaa/33598 (accessed on 13 April 2023).
- Brusca, S.; Famoso, F.; Lanzafame, R.; Mauro, S.; Garrano, A.M.C.; Monforte, P. Theoretical and Experimental Study of Gaussian Plume Model in Small Scale System. Energy Procedia 2016, 101, 58–65. [Google Scholar] [CrossRef]
- Dherbecourt, J.-B.; Melkonian, J.-M.; Godard, A.; Lebat, V.; Tanguy, N.; Blanchard, C.; Doz, S.; Foucher, P.-Y.; Huet, T.; Watremez, X.; et al. NAOMI GAZL: A Multispecies DIAL Tested on the TADI Gas Leak Simulation Facility. In EPJ Web of Conferences; EDP Sciences: Hefei, China, 2020; Volume 237, p. 03016. [Google Scholar]
- Koch, G.J.; Barnes, B.W.; Petros, M.; Beyon, J.Y.; Amzajerdian, F.; Yu, J.; Davis, R.E.; Ismail, S.; Vay, S.; Kavaya, M.J.; et al. Coherent differential absorption lidar measurements of CO2. Appl. Opt. 2004, 43, 5092–5099. [Google Scholar] [CrossRef] [PubMed]
- Cezard, N.; Le Mehaute, S.; Le Gouët, J.; Valla, M.; Goular, D.; Fleury, D.; Planchat, C.; Dolfi-Bouteyre, A. Performance assessment of a coherent DIAL-Doppler fiber lidar at 1645 nm for remote sensing of methane and wind. Opt. Express 2020, 28, 22345–22357. [Google Scholar] [CrossRef]
- Atmospheric Remote Sensing, NOAA Chemical Science Laboratory. Available online: https://csl.noaa.gov/groups/csl3/measurements/dsrc/dalek02/ (accessed on 1 May 2023).
Frequency Converter: | ||
Center wavelength | 1571.9 nm | New Focus, ECDL |
Arbitrary waveform generator | 2 GS/s, 250 MHz bandwidth | AWG1, Tektronix, Model 3252 |
Electro-optic modulator | 10 GHz bandwidth | EOM1, Thorlabs |
Acousto-optic modulator | 252 MHz | Brimrose |
Arbitrary waveform generator | 24 GS/s, 8 bits, 1 channel | AWG2, Tektronix, Model 7122C |
Electro-optic modulator | 20 GHz bandwidth | EOM2, EOSpace |
Electro-optic switches | 1 ns speed, 40 dB isolation | EOM3 + EOM4, EOSpace |
Invar filter cavity | 300 MHz free spectral range | Burleigh, CFP-500, l = 0.5 m |
Number of frequencies | 10 | Δν = 48 GHz |
Spectral purity | >99.9% | Filter cavity finesse ≈ 500 |
Booster optical amplifier | 20 mW, <20 dB gain | Thorlabs, Model S9FC1082P |
EDFA1 | 100 mW, <30 dB gain | Amonics, AMN-EDFA-L01/PM |
EDFA2 + EDFA3 | 105 μJ/pulse, 1 W power | NP Photonics, Custom model |
Pulse length | 300 ns | |
Spectral linewidth | <1 MHz | Full width at half maximum |
Pulse repetition rate | 7.143 kHz | 5 kHz to 10 kHz |
Tx/Rx optics: | ||
Tx beam diameter | 41 mm | ×10 beam expansion |
Tx beam M2 | <1.5 | NP Photonics, Custom model |
Tx beam divergence | <300 μrad | |
Elevation | 1.6 degrees | |
Rx telescope diameter | 279.4 mm | Schmidt-Cassegrain, Celestron |
Bandpass filter | 1.9 nm (FWHM) | >5 OD rejection, Alluxa |
Neutral density filter | 0.1, 0.3, 0.6, and 1 OD | Thorlabs |
Fiber-coupled | 300 μm aperture | 1 m cable length |
PMT detection | ~2% QE | Hamamatsu H12397-75 |
Data acquisition: | ||
Transimpedance amp gain | 5 kV/A, τ3dB ≈ 1 ns | Femto HCA-400M-5K-C |
Digitizer | 12 bits, 1 GS/s, 2 channels | GaGe EON CSE123G2 |
Raw data storage | 10 s accumulation | NetCDF4 file format |
Range resolution | 250 m to 500 m | Defined in post-processing |
Temporal resolution | 5 min | Defined in post-processing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stroud, J.R.; Dienstfrey, W.J.; Plusquellic, D.F. Study on Local Power Plant Emissions Using Multi-Frequency Differential Absorption LIDAR and Real-Time Plume Tracking. Remote Sens. 2023, 15, 4283. https://doi.org/10.3390/rs15174283
Stroud JR, Dienstfrey WJ, Plusquellic DF. Study on Local Power Plant Emissions Using Multi-Frequency Differential Absorption LIDAR and Real-Time Plume Tracking. Remote Sensing. 2023; 15(17):4283. https://doi.org/10.3390/rs15174283
Chicago/Turabian StyleStroud, Jasper R., William J. Dienstfrey, and David F. Plusquellic. 2023. "Study on Local Power Plant Emissions Using Multi-Frequency Differential Absorption LIDAR and Real-Time Plume Tracking" Remote Sensing 15, no. 17: 4283. https://doi.org/10.3390/rs15174283
APA StyleStroud, J. R., Dienstfrey, W. J., & Plusquellic, D. F. (2023). Study on Local Power Plant Emissions Using Multi-Frequency Differential Absorption LIDAR and Real-Time Plume Tracking. Remote Sensing, 15(17), 4283. https://doi.org/10.3390/rs15174283