Temporal and Spatial Variations in Carbon Flux and Their Influencing Mechanisms on the Middle Tien Shan Region Grassland Ecosystem, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Source
2.2.1. Measured Data Source
2.2.2. Remote Sensing Data
2.3. Data Processing
2.3.1. Measured Data Processing
2.3.2. Remote Sensing Data Processing
3. Results
3.1. Variation in CO2 Fluxes
3.1.1. Diurnal Variation in CO2 Fluxes
3.1.2. Daily and Monthly Variations of CO2 Fluxes
3.2. Impact of Meteorological Factors on CO2 Fluxes
3.2.1. Seasonal Variation in Meteorological Factors
3.2.2. Contribution of Meteorological Factors to CO2 Fluxes
3.3. Response of CO2 Fluxes to Temperature
3.3.1. Relationship between CO2 Fluxes and Temperature
3.3.2. Critical Values of Temperature Effects on CO2 Fluxes
3.4. The Trend of Carbon Flux at the Regional Scale
3.4.1. Assessment of the Applicability of GCFD Data
3.4.2. Remote Sensing Distribution of the GCFD Dataset
4. Discussion
4.1. Variations inCO2 Fluxes
4.2. The Relationship between CO2 Fluxes and Meteorological Factors and Their Response to Temperature
4.3. Remote Sensing Carbon Flux
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pachauri, R.K.; Reisinger, A. IPCC fourth assessment report. IPCC Geneva 2007, 2007, 044023. [Google Scholar]
- Liu, H.Z.; Tu, G.; Fu, C.B.; Shi, L.Q. Three-year Variations of Water, Energy and CO2 Fluxes of Cropland and Degraded Grassland Surfaces in a Semi-arid Area of Northeastern China. Adv. Atmos. Sci. 2008, 25, 1009–1020. [Google Scholar] [CrossRef]
- Tans, P.P.; Fung, I.Y.; Takahashi, T. Observational contrains on the global atmospheric CO2 budget. Science 1990, 247, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.Z.; Wang, M.L.; Li, D.H.; Li, N.N.; Wang, J.Y.; Niu, H.H.; Meng, M.; Liu, Y.; Zhang, G.H.; Jie, D.M. Phytolith evidence for changes in the vegetation diversity and cover of a grassland ecosystem in Northeast China since the mid-Holocene. Catena 2023, 226, 107061. [Google Scholar] [CrossRef]
- Bai YF, C.S. Carbon sequestration of Chinese grassland ecosystems: Stock, rate, and potential. Chin. J. Plant Ecol. 2018, 42, 261–264. [Google Scholar]
- Wang, Y.Y.; Xiao, J.F.; Ma, Y.M.; Luo, Y.Q.; Hu, Z.Y.; Li, F.; Li, Y.N.; Gu, L.L.; Li, Z.G.; Yuan, L. Carbon fluxes and environmental controls across different alpine grassland types on the Tibetan Plateau. Agric. For. Meteorol. 2021, 311, 108694. [Google Scholar] [CrossRef]
- Ma, Z.L.; Bork, E.W.; Attaeian, B.; Cahill, J.F.; Chang, S.X. Altered precipitation rather than warming and defoliation regulate short-term soil carbon and nitrogen fluxes in a northern temperate grassland. Agric. For. Meteorol. 2022, 327, 109217. [Google Scholar] [CrossRef]
- Shi, L.A.; Lin, Z.R.; Tang, S.M.; Peng, C.J.; Yao, Z.Y.; Xiao, Q.; Zhou, H.K.; Liu, K.S.; Shao, X.Q. Interactive effects of warming and managements on carbon fluxes in grasslands: A global meta-analysis. Agric. Ecosyst. Environ. 2022, 340, 108178. [Google Scholar] [CrossRef]
- Argenti, G.; Chiesi, M.; Fibbi, L.; Maselli, F. Use of remote sensing and bio-geochemical models to estimate the net carbon fluxes of managed mountain grasslands. Ecol. Model. 2022, 474, 110152. [Google Scholar] [CrossRef]
- Bai, Y.F.; Han, X.G.; Wu, J.G.; Chen, Z.Z.; Li, L.H. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 2004, 431, 181–184. [Google Scholar] [CrossRef]
- Jia, X.; Zha, T.S.; Gong, J.N.; Zhang, Y.Q.; Wu, B.; Qin, S.G.; Peltola, H. Multi-scale dynamics and environmental controls on net ecosystem CO2 exchange over a temperate semiarid shrubland. Agric. For. Meteorol. 2018, 259, 250–259. [Google Scholar] [CrossRef]
- Sun, S.-S.; Wu, Z.-P.; Xiao, Q.-T.; Yu, F.; Gu, S.-H.; Fang, D.; LI, L.; Zhao, X.-B. Factors influencing CO2 fluxes of a grassland ecosystem on the Yunnan-Guizhou Plateau, China. Acta Prataculturae Sin. 2020, 29, 184. [Google Scholar]
- Shen, H.; Zhu, Y.; Zhao, X.; Geng, X.; Gao, S.; Fang, J. Analysis of current grassland resources in China. Chin. Sci. Bull. 2016, 61, 139–154. [Google Scholar]
- Chen, C.B.; Peng, J.; Li, G.Y. Evaluating ecosystem health in the grasslands of Xinjiang. Arid. Zone Res. 2022, 39, 270–281. [Google Scholar] [CrossRef]
- Fang, X.; Guo, X.L.; Zhang, C.; Shao, H.; Zhu, S.H.; Li, Z.Q.; Feng, X.W.; He, B. Contributions of climate change to the terrestrial carbon stock of the arid region of China: A multi-dataset analysis. Sci. Total Environ. 2019, 668, 631–644. [Google Scholar] [CrossRef]
- Guo, W.Z.; Jing, C.Q.; Deng, X.J.; Chen, C.; Zhao, W.K.; Hou, Z.X.; Wang, G.X. Variations in carbon flux and factors influencing it on the northern slopes of the TienShan Mountains. Acta Prataculturae Sin. 2022, 31, 1–12. [Google Scholar] [CrossRef]
- Yang, F.; Huang, J.P.; He, Q.; Zheng, X.Q.; Zhou, C.L.; Pan, H.L.; Huo, W.; Yu, H.P.; Liu, X.Y.; Meng, L.; et al. Impact of differences in soil temperature on the desert carbon sink. Geoderma 2020, 379, 114636. [Google Scholar] [CrossRef]
- Du, Q.; Liu, H.Z.; Liu, Y.; Xu, L.J.; Sun, J.H. Water and carbon dioxide fluxes over a “floating blanket” wetland in southwest of China with eddy covariance method. Agric. For. Meteorol. 2021, 311, 108689. [Google Scholar] [CrossRef]
- Bao, Y.Z.; Liu, T.X.; Duan, L.M.; Tong, X.; Zhang, Y.Q.; Wang, G.Q.; Singh, V.P. Variations and controlling factors of carbon dioxide and methane fluxes in a meadow-rice ecosystem in a semi-arid region. Catena 2022, 215, 106317. [Google Scholar] [CrossRef]
- Li, R.; Zhang, M.; Chen, L.; Kou, X.; Skorokhod, A. CMAQ simulation of atmospheric CO2 concentration in East Asia: Comparison with GOSAT observations and ground measurements. Atmos. Environ. 2017, 160, 176–185. [Google Scholar] [CrossRef]
- Wang, J.; Lu, S.; Wang, W.; Tang, L.; Ma, S.; Wang, Y. Estimating vegetation productivity of urban regions using sun-induced chlorophyll fluorescence data derived from the OCO-2 satellite. Phys. Chem. Earth Parts A/B/C 2019, 114, 102783. [Google Scholar] [CrossRef]
- Kunchala, R.K.; Patra, P.K.; Kumar, K.N.; Chandra, N.; Attada, R.; Karumuri, R.K. Spatio-temporal variability of XCO2 over Indian region inferred from Orbiting Carbon Observatory (OCO-2) satellite and Chemistry Transport Model. Atmos. Res. 2022, 269, 106044. [Google Scholar] [CrossRef]
- Zhang, Z.; Guanter, L.; Porcar-Castell, A.; Rossini, M.; Pacheco-Labrador, J.; Zhang, Y. Global modeling diurnal gross primary production from OCO-3 solar-induced chlorophyll fluorescence. Remote Sens. Environ. 2023, 285, 113383. [Google Scholar] [CrossRef]
- Yao, F.; Qin, P.; Zhang, J.; Lin, E.; Boken, V. Uncertainties in assessing the effect of climate change on agriculture using model simulation and uncertainty processing methods. Chin. Sci. Bull. 2011, 56, 729–737. [Google Scholar] [CrossRef]
- Wilkin, J.; Levin, J.; Moore, A.; Arango, H.; López, A.; Hunter, E. A data-assimilative model reanalysis of the US Mid Atlantic Bight and Gulf of Maine: Configuration and comparison to observations and global ocean models. Prog. Oceanogr. 2022, 209, 102919. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, X.; Huang, Q.; Jiang, F. Impact of different ERA reanalysis data on GPP simulation. Ecol. Inform. 2022, 68, 101520. [Google Scholar] [CrossRef]
- Yang, P.; Wang, N.A.; Zhao, L.Q.; Zhang, D.Z.; Zhao, H.; Niu, Z.M.; Fan, G.Q. Variation characteristics and influencing mechanism of CO2 flux from lakes in the Badain Jaran Desert: A case study of Yindeer Lake. Ecol. Indic. 2021, 127, 107731. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Sachs, T.; Li, Z.; Pang, Y.W.; Xu, J.F.; Kalhori, A.; Wille, C.; Peng, X.X.; Fu, X.H.; Wu, Y.F.; et al. Long-term effects of rewetting and drought on GPP in a temperate peatland based on satellite remote sensing data. Sci. Total Environ. 2023, 882, 163395. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fang, G.; Deng, H. Impact of climate change on water resources in the Tianshan Mountians. Cent. Asia. Acta Geogr. Sin. 2017, 72, 18–26. [Google Scholar]
- Xiao, W.Q.; Ali, M.; Liu, Y.Q.; Wang, Y.; Gao, J.; Hajigul, S.; Gurinisahan, M. The rule of grassland surface radiation budget in the middle of TienShan Mountains. Acta Ecol. Sin. 2022, 42, 4550–4560. [Google Scholar]
- Sang, W. Plant diversity patterns and their relationships with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecol. Res. 2009, 24, 303–314. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef]
- Shangguan, W.; Xiong, Z.; Nourani, V.; Li, Q.; Lu, X.; Li, L.; Huang, F.; Zhang, Y.; Sun, W.; Dai, Y. A 1 km Global Carbon Flux Dataset Using In Situ Measurements and Deep Learning. Forests 2023, 14, 913. [Google Scholar] [CrossRef]
- Rannik, U.; Vesala, T. Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Bound. -Layer Meteorol. 1999, 91, 259–280. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric boundary Layer Flows: Their Structure and Measurement; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Moore, C.J. Frequency-response corrections for eddy-correlation systems. Bound.-Layer Meteorol. 1986, 37, 17–35. [Google Scholar] [CrossRef]
- Schotanus, P.; Nieuwstadt, F.T.M.; Debruin, H.A.R. Temperature-measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound.-Layer Meteorol. 1983, 26, 81–93. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water-vapor transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef]
- Desai, A.R.; Richardson, A.D.; Moffat, A.M.; Kattge, J.; Hollinger, D.Y.; Barr, A.; Falge, E.; Noormets, A.; Papale, D.; Reichstein, M.; et al. Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agric. For. Meteorol. 2008, 148, 821–838. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Liu, S.S.; Yang, Y.H.; Shen, H.H.; Hu, H.F.; Zhao, X.; Li, H.; Liu, T.Y.; Fang, J.Y. No significant changes in topsoil carbon in the grasslands of northern China between the 1980s and 2000s. Sci. Total Environ. 2018, 624, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, H.Z.; Sun, J.H.; Feng, J.W. Water and carbon dioxide fluxes over an alpine meadow in southwest China and the impact of a spring drought event. Int. J. Biometeorol. 2016, 60, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Sherin, G.; Aswathi, K.P.R.; Puthur, J.T. Photosynthetic functions in plants subjected to stresses are positively influenced by priming. Plant Stress 2022, 4, 100079. [Google Scholar] [CrossRef]
- Amar, G.; Mamtimin, A.; Wang, Y.; Wang, Y.; Gao, J.; Yang, F.; Song, M.; Aihaiti, A.; Wen, C.; Liu, J. Factors controlling and variations of CO2 fluxes during the growing season in Gurbantunggut Desert. Ecol. Indic. 2023, 154, 110708. [Google Scholar] [CrossRef]
- Pillai, N.D.; Nandy, S.; Patel, N.R.; Srinet, R.; Watham, T.; Chauhan, P. Integration of eddy covariance and process-based model for the intra-annual variability of carbon fluxes in an Indian tropical forest. Biodivers. Conserv. 2019, 28, 2123–2141. [Google Scholar] [CrossRef]
- Alekseychik, P.; Mammarella, I.; Karpov, D.; Dengel, S.; Terentieva, I.; Sabrekov, A.; Glagolev, M.; Lapshina, E. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog. Atmos. Chem. Phys. 2017, 17, 9333–9345. [Google Scholar] [CrossRef]
- Wang, K.; Bastos, A.; Ciais, P.; Wang, X.H.; Rodenbeck, C.; Gentine, P.; Chevallier, F.; Humphrey, V.W.; Huntingford, C.; O’Sullivan, M.; et al. Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability. Nat. Commun. 2022, 13, 3469. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Y.; Wang, X.; Gong, X.; Luo, Y.; Tian, D.J.A.P.S. Characteristics of annual variation in net carbon dioxide flux in a sandy grassland ecosystem during dry years. Acta Prataculeurae Sin. 2018, 27, 215–221. [Google Scholar]
- Yang, J.Y.; Jia, X.Y.; Ma, H.Z.; Chen, X.; Liu, J.; Shangguan, Z.P.; Yan, W.M. Effects of warming and precipitation changes on soil GHG fluxes: A meta- analysis. Sci. Total Environ. 2022, 827, 154351. [Google Scholar] [CrossRef]
- Gu, Q.; Wei, J.; Luo, S.C.; Ma, M.G.; Tang, X.G. Potential and environmental control of carbon sequestration in major ecosystems across arid and semi-arid regions in China. Sci. Total Environ. 2018, 645, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Che, H.; Wu, N. Effect of experimental warming on carbon and nitrogen content of sub-alpine meadow in Northwestern Sichuan. Bull. Bot. Res. 2008, 28, 730–736. [Google Scholar]
- Suyker, A.E.; Verma, S.B. Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Glob. Chang. Biol. 2001, 7, 279–289. [Google Scholar] [CrossRef]
- Hunt, J.E.; Kelliher, F.M.; McSeveny, T.M.; Ross, D.J.; Whitehead, D. Long-term carbon exchange in a sparse, seasonally dry tussock grassland. Glob. Chang. Biol. 2004, 10, 1785–1800. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Z.Q.; Sun, G.; Fang, X.R.; Zha, T.G.; McNulty, S.; Chen, J.Q.; Jin, Y.; Noormets, A. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China. For. Ecol. Manag. 2013, 300, 33–42. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, G.R.; Ge, J.P.; Sun, X.M.; Hirano, T.; Saigusa, N.; Wang, Q.F.; Zhu, X.J.; Zhang, Y.P.; Zhang, J.H.; et al. Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region. Agric. For. Meteorol. 2013, 182, 266–276. [Google Scholar] [CrossRef]
- Jia, X.; Mu, Y.; Zha, T.S.; Wang, B.; Qin, S.G.; Tian, Y. Seasonal and interannual variations in ecosystem respiration in relation to temperature, moisture, and productivity in a temperate semi-arid shrubland. Sci. Total Environ. 2020, 709, 136210. [Google Scholar] [CrossRef]
- Rambal, S.; Lempereur, M.; Limousin, J.-M.; Martin-StPaul, N.; Ourcival, J.-M.; Rodriguez-Calcerrada, J. How drought severity constrains gross primary production (GPP) and its partitioning among carbon pools in a Quercus ilex coppice? Biogeosciences 2014, 11, 6855–6869. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Schwalm, C.R.; Huntingford, C.; Sitch, S.; Ahlstrom, A.; Arneth, A.; Camps-Valls, G.; Ciais, P.; Friedlingstein, P.; et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 2017, 541, 516–520. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.S.; Yin, C.J.; Huang, H.; Sun, S.J.; Meng, P. Empirical analysis of the influences of meteorological factors on the interannual variations in carbon fluxes of a Quercus variabilis plantation. Agric. For. Meteorol. 2022, 326, 109190. [Google Scholar] [CrossRef]
- Chen, W.; Wang, S.; Wang, J.; Xia, J.; Luo, Y.; Yu, G.; Niu, S. Evidence for widespread thermal optimality of ecosystem respiration. Nat. Ecol. Evol. 2023, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Matsunaga, T.; Tan, Z.-H.; Saigusa, N.; Shirai, T.; Tang, Y.; Peng, S.; Fukuda, Y. Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest. Sci. Data 2020, 7, 313. [Google Scholar] [CrossRef] [PubMed]
- Luyssaert, S.; Inglima, I.; Jung, M.; Richardson, A.D.; Reichstein, M.; Papale, D.; Piao, S.L.; Schulzes, E.D.; Wingate, L.; Matteucci, G.; et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Chang. Biol. 2007, 13, 2509–2537. [Google Scholar] [CrossRef]
- Yan, M.; Zhang, W.; Zhang, Z.; Wang, L.; Ren, H.; Jiang, Y.; Zhang, X. Responses of soil C stock and soil C loss to land restoration in Ili River Valley, China. Catena 2018, 171, 469–474. [Google Scholar] [CrossRef]
Data Parameters | Detailed Information |
---|---|
Variable | NEE, GPP, Reco |
Time coverage | 1990–2020 |
Spatial resolution | 1 km |
Coverage area | 180°E~180°W, 80°N~60°S |
Data storage format | NetCDF4 |
Data units | 0.01 gc m−2 d−1 |
Missing values | 0 |
Type | Study Period | Position | CO2 (g C m−2) | Reference |
---|---|---|---|---|
Grassland | April 2018~September 2018 | 43°28′N, 87°12′E | −329.49 | This study |
Grassland | July 2017~August 2018 | 27°46′N, 107°28′E | −425.14 * | [12] |
Sandy grassland | May 2015~September 2015 | 42°55′N, 12°42′E | −120.54 | [50] |
Siberian bog | May 2015~August 2015 | 60.90°N, 68.70°E | −202 | [48] |
Floating blanket marsh | January 2016~December 2016 | 25°07′N, 98°33′E | −233.8 * | [18] |
Forest | January 2015~December 2015 | 30°06′N, 78°12′E | −526.87 * | [47] |
Meadow—rice | May 2020~October 2020 | 43°20′N, 122°37′E | −769.24 | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Wang, Y.; Mamtimin, A.; Liu, Y.; Gao, J.; Aihaiti, A.; Wen, C.; Song, M.; Yang, F.; Zhou, C.; et al. Temporal and Spatial Variations in Carbon Flux and Their Influencing Mechanisms on the Middle Tien Shan Region Grassland Ecosystem, China. Remote Sens. 2023, 15, 4091. https://doi.org/10.3390/rs15164091
Zhang K, Wang Y, Mamtimin A, Liu Y, Gao J, Aihaiti A, Wen C, Song M, Yang F, Zhou C, et al. Temporal and Spatial Variations in Carbon Flux and Their Influencing Mechanisms on the Middle Tien Shan Region Grassland Ecosystem, China. Remote Sensing. 2023; 15(16):4091. https://doi.org/10.3390/rs15164091
Chicago/Turabian StyleZhang, Kun, Yu Wang, Ali Mamtimin, Yongqiang Liu, Jiacheng Gao, Ailiyaer Aihaiti, Cong Wen, Meiqi Song, Fan Yang, Chenglong Zhou, and et al. 2023. "Temporal and Spatial Variations in Carbon Flux and Their Influencing Mechanisms on the Middle Tien Shan Region Grassland Ecosystem, China" Remote Sensing 15, no. 16: 4091. https://doi.org/10.3390/rs15164091
APA StyleZhang, K., Wang, Y., Mamtimin, A., Liu, Y., Gao, J., Aihaiti, A., Wen, C., Song, M., Yang, F., Zhou, C., & Huo, W. (2023). Temporal and Spatial Variations in Carbon Flux and Their Influencing Mechanisms on the Middle Tien Shan Region Grassland Ecosystem, China. Remote Sensing, 15(16), 4091. https://doi.org/10.3390/rs15164091