Spatial-Temporal Pattern Analysis of Grassland Yield in Mongolian Plateau Based on Artificial Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.2.1. Remote Sensing Data
2.2.2. Land Cover Data
2.2.3. Grass Yield Sample Data
2.3. Methods
2.3.1. Models Parameter Selection
2.3.2. Models Construction
MLR Model
KNN Model
RF Model
ANN Model
2.3.3. Accuracy Evaluation
2.3.4. Trend Analysis
3. Results
3.1. Multi-Factor Models Comparison
3.2. Single-factor Model Comparison
3.3. Spatial and Temporal Variability of Overall Grass Production in the MP
3.4. Trend Analysis of Grass Yield
4. Discussion
4.1. Model Variables Analysis
4.1.1. Sensitivity Analysis of Model Variables
4.1.2. Permutation Feature Importance
4.2. Comparison with Other Studies
4.3. Model Advantages and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Liu, H.; Zhang, A.; Zhao, Y.; Zhao, A.; Wang, D. Spatial scale transformation–based estimation model for fresh grass yield: A case study of the Xilingol Grassland, Inner Mongolia, China. Environ. Sci. Pollut. Res. 2022, 30, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Xu, B.; Yang, X.; Jin, Y.; Li, J.; Xia, L.; Chen, S.; Ma, H. Remote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net Primary Productivity (NPP): A Case Study in the Xilingol Grassland of Northern China. Remote Sens. 2014, 6, 5368–5386. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, J.; Xie, H.; Ochir, A.; Davaasuren, D. Applicability of Grassland Production Estimation Using Remote Sensing for the Mongolian Plateau by Comparing Typical Regions in China and Mongolia. Sustainability 2022, 14, 3122. [Google Scholar] [CrossRef]
- Wei, Y.; Zhen, L. The dynamics of livestock and its influencing factors on the Mongolian Plateau. Environ. Dev. 2020, 34, 100518. [Google Scholar] [CrossRef]
- Qin, P.; Sun, B.; Li, Z.; Gao, Z.; Li, Y.; Yan, Z.; Gao, T. Estimation of Grassland Carrying Capacity by Applying High Spatiotemporal Remote Sensing Techniques in Zhenglan Banner, Inner Mongolia, China. Sustainability 2021, 13, 3123. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Green, S.; Dwyer, N. Application of statistical and machine learning models for grassland yield estimation based on a hypertemporal satellite remote sensing time series. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 5060–5063. [Google Scholar] [CrossRef]
- Wang, L.; Yu, H.Y.; Zhang, Q.; Xu, Y.; Tao, Z.; Alatalo, J.; Dai, J. Responses of aboveground biomass of alpine grass-lands to climate changes on the Qinghai-Tibet Plateau. J. Geogr. Sci. 2018, 28, 1953–1964. [Google Scholar]
- Dusseux, P.; Guyet, T.; Pattier, P.; Barbier, V.; Nicolas, H. Monitoring of grassland productivity using Sentinel-2 remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102843. [Google Scholar] [CrossRef]
- Song, X.; Mi, N.; Mi, W.; Li, L. Spatial non-stationary characteristics between grass yield and its influencing factors in the Ningxia temperate grasslands based on a mixed geographically weighted regression model. J. Geogr. Sci. 2022, 32, 1076–1102. [Google Scholar] [CrossRef]
- Motlagh, M.G.; Kafaky, S.B.; Mataji, A.; Akhavan, R. Estimating and mapping forest biomass using regression models and Spot-6 images (case study: Hyrcanian forests of north of Iran). Environ. Monit. Assess. 2018, 190, 352. [Google Scholar] [CrossRef]
- Xue, J.; Ge, Y.; Ren, H. Spatial upscaling of green aboveground biomass derived from MODIS-based NDVI in arid and semiarid grasslands. Adv. Space Res. 2017, 60, 2001–2008. [Google Scholar] [CrossRef]
- You, H.; Luo, C.; Liu, Z.; Wang, J. Study on the Method of Grass Yield Model in the Source Region of Three Rivers with Multivariate Data. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012031. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R. RETRACTED: Estimation of aboveground biomass of vegetation based on landsat 8 OLI images. Heliyon 2022, 8, e11099. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.C.; Xu, B.; Jin, Y.X.; Li, J.Y.; Zhu, X.H. On Grass Yield Remote Sensing Estimation Models of China’s Northern Farming-Pastoral Ecotone. In Advances in Computational Environment Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 142, pp. 281–291. [Google Scholar] [CrossRef]
- Liu, J.; Atzberger, C.; Huang, X.; Shen, K.; Liu, Y.; Wang, L. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—An empirical comparison. Front. Earth Sci. 2020, 14, 413–429. [Google Scholar] [CrossRef]
- Ali, A.; Lin, S.; He, J.; Kong, F.; Yu, J.; Jiang, H. Elucidating space, climate, edaphic, and biodiversity effects on aboveground biomass in tropical forests. Land Degrad. Dev. 2019, 30, 918–927. [Google Scholar] [CrossRef]
- Timothy, D.; Onisimo, M.; Cletah, S.; Adelabu, S.; Tsitsi, B. Remote sensing of aboveground forest biomass: A review. Trop. Ecol. 2016, 57, 125–132. [Google Scholar]
- Wu, C.; Chen, K.; E, C.; You, X.; He, D.; Hu, L.; Liu, B.; Wang, R.; Shi, Y.; Li, C.; et al. Improved CASA model based on satellite remote sensing data: Simulating net primary productivity of Qinghai Lake basin alpine grassland. Geosci. Model Dev. 2022, 15, 6919–6933. [Google Scholar] [CrossRef]
- Yu, D.; Shi, P.; Shao, H.; Zhu, W.; Pan, Y. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model. Int. J. Remote Sens. 2009, 30, 4851–4866. [Google Scholar] [CrossRef]
- Goetz, S.J.; Prince, S.D.; Small, J.; Gleason, A.C.R. Interannual variability of global terrestrial primary production: Results of a model driven with satellite observations. J. Geophys. Res. Atmos. 2000, 105, 20077–20091. [Google Scholar] [CrossRef]
- Hadian, F.; Jafari, R.; Bashari, H.; Tartesh, M.; Clarke, K.D. Estimation of spatial and temporal changes in net primary production based on Carnegie Ames Stanford Approach (CASA) model in semi-arid rangelands of Semirom County, Iran. J. Arid Land 2019, 11, 477–494. [Google Scholar] [CrossRef] [Green Version]
- Nayak, R.K.; Patel, N.R.; Dadhwal, V.K. Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model. Environ. Monit. Assess. 2009, 170, 195–213. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Liu, X.; Qiao, Q. Research on Sustainable Development in an Alpine Pastoral Area Based on Equilibrium Analysis Between the Grassland Yield, Livestock Carrying Capacity, and Animal Husbandry Population. Sustainability 2019, 11, 4659. [Google Scholar] [CrossRef] [Green Version]
- Bao, G.; Bao, Y.; Qin, Z.; Xin, X.; Bao, Y.; Bayarsaikan, S.; Zhou, Y.; Chuntai, B. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 84–93. [Google Scholar] [CrossRef]
- Tang, R.; Zhao, Y.; Lin, H. Spatio-Temporal Variation Characteristics of Aboveground Biomass in the Headwater of the Yellow River Based on Machine Learning. Remote Sens. 2021, 13, 3404. [Google Scholar] [CrossRef]
- Liang, T.; Feng, Q.; Ge, J.; Xie, H.; Liang, T. Assessment of Machine Learning Methods for Modeling Alpine Grassland Biomass in Southern Qinghai Province, China. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering, Sanya, China, 22–24 October 2019; 77. [Google Scholar] [CrossRef]
- Opelele, O.; Yu, Y.; Fan, W.; Chen, C.; Kachaka, S. Biomass Estimation Based on Multilinear Regression and Machine Learning Algorithms in the Mayombe Tropical Forest, in the Democratic Republic of Congo. Appl. Ecol. Environ. Res. 2021, 19, 359–377. [Google Scholar] [CrossRef]
- Qiu, A.; Yang, Y.; Wang, D.; Xu, S.; Wang, X. Exploring parameter selection for carbon monitoring based on Landsat-8 imagery of the aboveground forest biomass on Mount Tai. Eur. J. Remote Sens. 2019, 53, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Xia, X.; Huang, Y.; Lu, Y.; Guo, Z. Estimation of National Forest Aboveground Biomass from Multi-Source Remotely Sensed Dataset with Machine Learning Algorithms in China. Remote Sens. 2022, 14, 5487. [Google Scholar] [CrossRef]
- Liu, W.; Xu, C.; Zhang, Z.; De Boeck, H.; Wang, Y.; Zhang, L.; Xu, X.; Zhang, C.; Chen, G.; Xu, C. Machine learning-based grassland aboveground biomass estimation and its response to climate variation in Southwest China. Front. Ecol. Evol. 2023, 11, 1146850. [Google Scholar] [CrossRef]
- Haywood, A.; Stone, C.; Jones, S. The potential of sentinel satellites for large area aboveground forest biomass mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Tian, Y.; Huang, H.; Zhou, G.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Sci. Total Environ. 2021, 781, 146816. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M.; Bai, Y.; Zhang, L. A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecol. Model. 2009, 220, 1810–1818. [Google Scholar] [CrossRef]
- Yang, S.; Feng, Q.; Liang, T.; Liu, B.; Zhang, W.; Xie, H. Modeling grassland above-ground biomass based on artificial neural network and remote sensing in the Three-River Headwaters Region. Remote Sens. Environ. 2018, 204, 448–455. [Google Scholar] [CrossRef]
- Gao, Q.; Zhu, W.; Schwartz, M.W.; Ganjurjav, H.; Wan, Y.; Qin, X.; Ma, X.; Williamson, M.A.; Li, Y. Climatic change controls productivity variation in global grasslands. Sci. Rep. 2016, 6, 26958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, T.; Wu, J.; Wang, J.; Shao, C.; Wang, W.; Chen, D.; Li, X. The Net Influence of Drought on Grassland Productivity over the Past 50 Years. Sustainability 2022, 14, 12374. [Google Scholar] [CrossRef]
- Li, G.; Yu, L.; Liu, T.; Bao, Y.; Yu, J.; Xin, B.; Bao, L.; Li, X.; Chang, X.; Zhang, S. Spatial and temporal variations of grassland vegetation on the Mongolian Plateau and its response to climate change. Front. Ecol. Evol. 2023, 11, 1067209. [Google Scholar] [CrossRef]
- Shao, J.; Zhou, X.; Groenigen, K.J.; Zhou, G.; Zhou, H.; Zhou, L.; Lu, M.; Xia, J.; Jiang, L.; Hungate, B.A.; et al. Warming effects on grassland productivity depend on plant diversity. Glob. Ecol. Biogeogr. 2021, 31, 588–598. [Google Scholar] [CrossRef]
- Su, R.; Yu, T.; Dayananda, B.; Bu, R.; Su, J.; Fan, Q. Impact of climate change on primary production of Inner Mongolian grasslands. Glob. Ecol. Conserv. 2020, 22, e00928. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Giannico, V.; Park, H.; Xiao, J.; Shirkey, G.; Ouyang, Z.; Shao, C.; Lafortezza, R.; Qi, J. Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors. Remote Sens. Environ. 2018, 213, 34–48. [Google Scholar] [CrossRef]
- Narisu, N.; Bao, Y.; Bao, Y. Drought Temporal Variation Characteristics Analysis based on the PDSI Data in Mongolian Plateau. In Proceedings of the 7th Annual Meeting of Risk Analysis Council of China Association for Disaster Prevention (RAC-2016), Changsha, China, 4–6 November 2016; pp. 843–848. [Google Scholar]
- Baghi, N.G.; Oldeland, J. Do soil-adjusted or standard vegetation indices better predict above ground biomass of semi-arid, saline rangelands in North-East Iran? Int. J. Remote Sens. 2019, 40, 8223–8235. [Google Scholar] [CrossRef]
- Nakano, T.; Bavuudorj, G.; Urianhai, N.G.; Shinoda, M. Monitoring aboveground biomass in semiarid grasslands using MODIS images. J. Agric. Meteorol. 2013, 69, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Gang, B.; Hasituya; Hugejiletu; Bao, Y. Remotely sensed estimate of biomass carbon stocks in Xilingol grassland using MODIS NDVI data. In Proceedings of the International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shenyang, China, 20–22 December 2013; pp. 676–679. [Google Scholar]
- Wehlage, D.C. Monitoring Year-to-Year Variability in Dry Mixed-Grass Prairie Yield Using Multi-Sensor Remote Sensing. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2012. [Google Scholar]
- Yin, C.; Luo, M.; Meng, F.; Sa, C.; Yuan, Z.; Bao, Y. Contributions of Climatic and Anthropogenic Drivers to Net Primary Productivity of Vegetation in the Mongolian Plateau. Remote Sens. 2022, 14, 3383. [Google Scholar] [CrossRef]
- Hong, Y.S.; Heo, J.; Jung, J.; Han, S.H.; Kim, K.M. Estimation of Aboveground Biomass Carbon Stock Using Landsat TM and Ratio Images—kNN algorithm and Regression Model Priority. J. Korean Soc. Geospat. Inf. Sci. 2011, 19, 39–48. [Google Scholar]
- Xia, J.; Ma, M.; Liang, T.; Wu, C.; Yang, Y.; Zhang, L.; Zhang, Y.; Yuan, W. Estimates of grassland biomass and turnover time on the Tibetan Plateau. Environ. Res. Lett. 2017, 13, 014020. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Xu, S.; Dong, J.; Yang, Y. Forest Above Ground Biomass Estimation from Remotely Sensed Imagery in the Mount Tai Area Using the RBF ANN Algorithm. Intell. Autom. Soft Comput. 2018, 24, 391–398. [Google Scholar] [CrossRef]
- Kisi, O.; Alizamir, M.; Zounemat-Kermani, M. Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data. Nat. Hazards 2017, 87, 367–381. [Google Scholar] [CrossRef]
- Bolton, D.K.; Tompalski, P.; Coops, N.C.; White, J.C.; Wulder, M.A.; Hermosilla, T.; Queinnec, M.; Luther, J.E.; van Lier, O.R.; Fournier, R.A.; et al. Optimizing Landsat time series length for regional mapping of lidar-derived forest structure. Remote Sens. Environ. 2020, 239, 111645. [Google Scholar] [CrossRef]
- Prăvălie, R.; Niculiţă, M.; Roşca, B.; Patriche, C.; Dumitraşcu, M.; Marin, G.; Nita, I.-A.; Bandoc, G.; Birsan, M.-V. Modelling forest biomass dynamics in relation to climate change in Romania using complex data and machine learning algorithms. Stoch. Environ. Res. Risk Assess. 2023, 37, 1669–1695. [Google Scholar] [CrossRef]
- Yuan, M.; Zhu, Q.; Zhang, J.; Liu, J.; Chen, H.; Peng, C.; Li, P.; Li, M.; Wang, M.; Zhao, P. Global response of terrestrial gross primary productivity to climate extremes. Sci. Total Environ. 2020, 750, 142337. [Google Scholar] [CrossRef]
- Bao, G.; Tuya, A.; Bayarsaikhan, S.; Dorjsuren, A.; Mandakh, U.; Bao, Y.; Li, C.; Vanchindorj, B. Variations and climate constraints of terrestrial net primary productivity over Mongolia. Quat. Int. 2019, 537, 112–125. [Google Scholar] [CrossRef]
- Yan, N.; Zhu, W.; Wu, B.; Tuvdendorj, B.; Chang, S.; Mishigdorj, O.; Zhang, X. Assessment of the grassland carrying capacity for winter-spring period in Mongolia. Ecol. Indic. 2023, 146, 109868. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef] [Green Version]
Abbreviation | Resolution | Temporal Resolution | Data Source |
---|---|---|---|
NDVI | 500 m | 16 d | MOD13Q1 |
EVI | 500 m | 16 d | MOD13Q1 |
XSAVI | 500 m | 8 d | MOD09A1 Band Calculate |
LST | 1000 m | 8 d | MOD11A2 |
Precipitation | 0.25° | 1 d | PERSIANN-CDR |
β | |Z| | Trend |
---|---|---|
β > 0 | |Z| > 1.96 | Significantly increasing |
β > 0 | |Z| < 1.96 | Increasing |
β < 0 | |Z| > 1.96 | Significantly decreasing |
β < 0 | |Z| < 1.96 | Decreasing |
Index | Model | Formula | R2 | RMSE |
---|---|---|---|---|
NDVI | Linear | y = 0.0012x + 0.4739 | 0.328 | 108.7 |
Exponential | y = 0.3568e0.0021x | 0.385 | 94.7 | |
Power | y = 0.1287x0.3159 | 0.416 | 84.5 | |
Logarithmic | y = 0.1094ln(x) + 0.1357 | 0.404 | 90.6 | |
EVI | Linear | y = 0.0009x + 0.5123 | 0.288 | 126.9 |
Exponential | y = 0.3075e0.0018x | 0.317 | 116.6 | |
Power | y = 0.1139x0.3591 | 0.335 | 104.9 | |
Logarithmic | y = 0.1762ln(x) − 0.1267 | 0.327 | 112.6 | |
XSAVI | Linear | y = 0.001x + 0.3862 | 0.275 | 134.8 |
Exponential | y = 0.4267e0.0024x | 0.332 | 106.6 | |
Power | y = 0.0965x0.3875 | 0.368 | 99.9 | |
Logarithmic | y = 0.1368ln(x) + 0.0726 | 0.382 | 95.3 |
Region | Obvious Increase | Slight Increase | Slight Decrease | Obvious Decrease |
---|---|---|---|---|
Inner Mongolia | 45.56% | 46.92% | 6.08% | 1.44% |
Tuva | 64.47% | 18.8% | 15.92% | 0.81% |
Selangor | 47.22% | 47.05% | 5.52% | 0.21% |
Sukhbaatar | 58.4% | 37.86% | 2.89% | 0.85% |
Khuvsgul | 56.77% | 28.14% | 14.24% | 0.86% |
Kent | 51.89% | 47.26% | 0.64% | 0.21% |
Arhangay | 46.17% | 49.75% | 3.99% | 0.08% |
Dornod | 57.2% | 41.56% | 1.23% | 0.01% |
Tuv | 90.08% | 9.55% | 0.34% | 0.03% |
Burgan | 53.53% | 39.98% | 6.24% | 0.25% |
Dzavhan | 68.73% | 27.19% | 3.16% | 0.92% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, J.; Li, K.; Ochir, A.; Togtokh, C.; Xu, C. Spatial-Temporal Pattern Analysis of Grassland Yield in Mongolian Plateau Based on Artificial Neural Network. Remote Sens. 2023, 15, 3968. https://doi.org/10.3390/rs15163968
Li M, Wang J, Li K, Ochir A, Togtokh C, Xu C. Spatial-Temporal Pattern Analysis of Grassland Yield in Mongolian Plateau Based on Artificial Neural Network. Remote Sensing. 2023; 15(16):3968. https://doi.org/10.3390/rs15163968
Chicago/Turabian StyleLi, Menghan, Juanle Wang, Kai Li, Altansukh Ochir, Chuluun Togtokh, and Chen Xu. 2023. "Spatial-Temporal Pattern Analysis of Grassland Yield in Mongolian Plateau Based on Artificial Neural Network" Remote Sensing 15, no. 16: 3968. https://doi.org/10.3390/rs15163968
APA StyleLi, M., Wang, J., Li, K., Ochir, A., Togtokh, C., & Xu, C. (2023). Spatial-Temporal Pattern Analysis of Grassland Yield in Mongolian Plateau Based on Artificial Neural Network. Remote Sensing, 15(16), 3968. https://doi.org/10.3390/rs15163968