Satellite Altimetry for Ocean and Coastal Applications: A Review
Abstract
:1. Introduction
2. A Legacy of Ocean Altimetry Missions
3. From Research to Applications
- Increased flooding: Rising sea levels exacerbate the risk of coastal flooding, making low-lying areas more vulnerable to storm surges and high tides. This puts coastal properties, infrastructure, and human lives at greater risk [9].
- Infrastructure vulnerability: Critical infrastructure such as roads, bridges, ports, and other utilities in coastal regions are at higher risk from rising sea levels. These assets may require costly upgrades, relocation, or protection measures to mitigate impacts and ensure long-term functionality [8,12].
- Displacement and relocation: More coastal and island communities will face the daunting task of relocation due to increased flooding and the loss of habitable land as sea levels rise. Displaced populations face challenges in finding alternative housing, as well as potential social and economic disruptions [12].
- Environmental impacts: Coastal ecosystems (i.e., wetlands and estuaries) are critical habitats for numerous species and provide valuable ecosystem services. Threats from sea level rise include habitat loss, altered biodiversity, and possible cascading effects on marine and terrestrial ecosystems [13].
- Socioeconomic consequences: Coastal communities are often centers of economic activity (tourism, fisheries, and commerce) that can be disrupted, leading to financial loss, job reduction, and decreased property value. Strain on local civic budgets can result from the need for investment in adaptation measures and disaster recovery [11,14].
4. User Communities
- Biodiversity—understanding and conservation of biodiversity, fisheries management, and marine protected areas.
- Climate—understanding and assessment of sea level rise and global ocean heat content using climate records from altimetry.
- Disasters (hazards)—storm surge from coastal storms, hurricane intensity forecasts, and improved tsunami wave models.
- Ocean and coastal resources—storm surge modeling, sediment transport, and water quality.
- Water resources—climate-related impacts to the Earth’s water cycle and resources.
- Weather—seasonal forecasts of the numbers and strengths of hurricanes expected in a given hurricane season, as well as intensity forecasts of individual hurricanes.
5. Applications Areas
5.1. Operational Oceanography—Simultaneous Operation of Multiple Missions for Operations
5.2. Fisheries Management and Biodiversity—Tracking Marine Life
5.3. Weather and Climate Forecasting—Improved Accuracy
5.4. Improved Flood Modeling—Coastal Flooding from Upstream and Downstream
5.5. Hazards—Floods and Insurance
5.6. Additional Applications
5.6.1. Tsunami Detection
5.6.2. Geodetic Applications
5.7. Decision Support—Reducing Environmental Risk and Contributing to Public Policymaking
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheney, R.E. Satellite Altimetry. In Encyclopedia of Ocean Sciences; Steele, J.H., Thorpe, S.A., Turekian, K.K., Eds.; Elsevier Press: Amsterdam, The Netherlands, , 2001; pp. 2504–2510. [Google Scholar]
- Vignudelli, S.; Kostianoy, A.G.; Cipollini, P.; Benveniste, J. (Eds.) Coastal Altimetry; Springer: Berlin/Heidelberg, Germany, 2011; 566p. [Google Scholar] [CrossRef] [Green Version]
- Padgett, J.E.; Panakkal, P.; González-Dueñas, C. Infrastructure impacts and vulnerability to coastal flood events. In Coastal Flood Risk Reduction; Brody, S., Lee, Y., Kothuis, B.B., Eds.; Elsevier Press: Amsterdam, The Netherlands, 2022; pp. 151–165. [Google Scholar] [CrossRef]
- Neumann, J.; Hudgens, D.; Herter, J.; Martinich, J. The Economics of Adaptation along Developed Coastlines. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 89–98. [Google Scholar] [CrossRef]
- Vitousek, S.; Buscombe, D.; Vos, K.; Barnard, P.; Ritchie, A.; Warrick, J. The future of coastal monitoring through satellite remote sensing. Camb. Prism. Coast. Futures 2023, 1, E10. [Google Scholar] [CrossRef]
- Ouellette, W.; Getinet, W. Remote sensing for Marine Spatial Planning and Integrated Coastal Areas Management: Achievements, challenges, opportunities and future prospects. Remote Sens. Appl. Soc. Environ. 2016, 4, 138–157. [Google Scholar]
- Nerem, R.S.; Fasullo, J. Observations of the Rate and Acceleration of Global Mean Sea Level Change. Bull. Amer. Meteor. Soc. 2019, 100, S15–S18. [Google Scholar] [CrossRef]
- Appeaning Addo, K.; Larbi, L.; Amisigo, B.; Kwabena Ofori-Danson, P. Impacts of Coastal Inundation Due to Climate Change in a Cluster of Urban Coastal Communities in Ghana, West Africa. Remote Sens. 2011, 3, 2029–2050. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.; Bell, J.; Coker, D.; Hertz, E.; Labarge, N.; Blake, G. A lifeline and social vulnerability analysis of sea level rise impacts on rural coastal communities. Shore Beach 2018, 86, 36–44. [Google Scholar]
- Periasamy, A. Effects of coastal erosion due to climate change on fishermen communities in Tamil Nadu. Disaster Adv. 2023, 16, 68–74. [Google Scholar] [CrossRef]
- Scyphers, S.; Beck, M.; Furman, K.; Haner, J.; Josephs, L.; Lynskey, R.; Keeler, A.; Landry, C.; Powers, S.; Webb, B.; et al. A Waterfront View of Coastal Hazards: Contextualizing Relationships among Geographic Exposure, Shoreline Type, and Hazard Concerns among Coastal Residents. Sustainability 2019, 11, 6687. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, M.M. Assessing the Impacts of Population Relocation Induced by Future Sea-Level Rise Scenarios on Transportation Systems in Coastal Communities. Sustain. Urban Plan. Divid. Cities 2022, 7, 68–83. [Google Scholar] [CrossRef]
- Ward, R.D.; Burnside, N.G.; Joyce, C.B.; Sepp, K.; Teasdale, P.A. Improved modelling of the impacts of sea level rise on coastal wetland plant communities. Hydrobiologia 2016, 774, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Makame, M.O.; Mwevura, H. Vulnerability and Adaptation Strategies of Coastal Communities to the Associated Impacts of Sea Level Rise and Coastal Flooding. In Climate Change and Coastal Resources in Tanzania; Yanda, P., Bryceson, I., Mwevura, H., Mung’ong’o, C., Eds.; Springer Climate: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Tomasicchio, G.; Francone, A.; Leone, E.; Frega, F.; Chiaia, G.; Saponieri, A.; Damiani, L. Coastal sand dune restoration with an eco-friendly technique. Aquat. Ecosyst. Health Manag. 2020, 23, 417. [Google Scholar] [CrossRef]
- Guthrie, A.; Stafford, S.; Scheld, A.M.; Nunez, K.; Bilkovic, D.M. Property owner shoreline modification decisions vary based on their perceptions of shoreline change and interests in ecological benefits. Front. Mar. Sci. 2023, 10, 1031012. [Google Scholar] [CrossRef]
- Sauvé, P.; Bernatchez, P.; Moisset, S.; Glaus, M.; Goudreault, M.-O. A need to better monitor the effects of coastal defense measures on coastal socio-ecological systems to improve future adaptation solutions. Ocean Coast. Manag. 2023, 239, 106599. [Google Scholar] [CrossRef]
- Smith, E.A.; Sweet, W.; Mitchell, M.; Domingues, R.; Weaver, C.P.; Baringer, M.; Goni, G.; Haines, J.; Loftis, J.D.; Boon, J.; et al. Treading Water: Tools to Help US Coastal Communities Plan for Sea Level Rise Impacts. Front. Mar. Sci. 2019, 6, 300. [Google Scholar] [CrossRef]
- Vázquez, L.; Vandergeest, P. Coastal erosion narratives in the Gulf of Mexico: Implications for climate change governance. J. Political Ecol. 2022, 29, 705–724. [Google Scholar] [CrossRef]
- Altenau, E.H.; Pavelsky, T.M.; Durand, M.T.; Yang, X.; Frasson, R.P.d.M.; Bendezu, L. The surface water and ocean topography (SWOT) mission river database (SWORD): A global river network for satellite data products. Water Resour. Res. 2021, 57, e2021WR030054. [Google Scholar] [CrossRef]
- Cazenave, A. Satellite Altimetry. In Encyclopedia of Ocean Sciences, 3rd ed.; Cochran, J.K., Bokuniewicz, H.J., Yager, P.L., Eds.; Academic Press: San Diego, CA, USA, 2019; pp. 397–401. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding—A Global Assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [Green Version]
- US Department of Commerce (USDC) 2021. November 6–8, 2021 Coastal Flooding. National Weather Service, 22 December 2021. Available online: https://www.weather.gov/ilm/Nov2021CoastalFlood(accessed on 3 August 2023).
- Sweet, W.; Simon, S.; Dusek, G.; Marcy, D.; Brooks, W.; Pendleton, M.; Marra, J. The State of High Tide Flooding and Annual Outlook, NOAA Tides & Currents. Retrieved November 30, 2021. Available online: https://tidesandcurrents.noaa.gov/publications/2021_State_of_High_Tide_Flooding_and_Annual_Outlook_Final.pdf(accessed on 3 August 2023).
- US Harbors. The State of High Tide Flooding and Annual NOAA Outlook. 2022. USHarbors.com. Available online: https://www.usharbors.com/2022/05/the-state-of-high-tide-flooding-and-annual-noaa-outlook/ (accessed on 3 August 2023).
- National Science and Technology Council. National Plan for Civil Earth Observations. 2014. Available online: https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/2014_national_plan_for_civil_earth_observations.pdf (accessed on 3 August 2023).
- Dibarboure, G.; Dorandeu, J.; LeTraon, P.-Y.; Picot, N. SSALTO/DUACS: 15 Years of Precise and Consistent Multi-Mission Altimetry Data. European Space Agency, (Special Publication) ESA SP. 2006. Available online: https://www.researchgate.net/publication/240622367_SSALTODUACS_15_years_of_precise_and_consistent_multi-mission_altimetry_data (accessed on 3 August 2023).
- Santos, A.M.P. Fisheries oceanography using satellite and airborne remote sensing methods: A review. Fish. Res. 2000, 49, 1–20. [Google Scholar] [CrossRef]
- Chassot, E.; Bonhommeau, S.; Reygondeau, G.; Nieto, K.; Polovina, J.J.; Huret, M.; Dulvy, N.K.; Demarcq, H. Satellite remote sensing for an ecosystem approach to fisheries management. ICES J. Mar. Sci. 2011, 68, 651–666. [Google Scholar] [CrossRef] [Green Version]
- Stuart, V.; Platt, T.; Sathyendranath, S.; Pravin, P. Remote sensing and fisheries: An introduction. ICES J. Mar. Sci. 2011, 68, 639–641. [Google Scholar] [CrossRef]
- Klemas, V. Fisheries applications of remote sensing: An overview. Fish. Res. 2013, 148, 124–136. [Google Scholar] [CrossRef]
- Belkin, I.M. Remote Sensing of Ocean Fronts in Marine Ecology and Fisheries. Remote Sens. 2021, 13, 883. [Google Scholar] [CrossRef]
- Yen, K.W.; Chen, C.H. Research Gap Analysis of Remote Sensing Application in Fisheries: Prospects for Achieving the Sustainable Development Goals. Remote Sens. 2021, 13, 1013. [Google Scholar] [CrossRef]
- Schwing, F.B. Modern technologies and integrated observing systems are “instrumental” to fisheries oceanography: A brief history of ocean data collection. Fish. Oceanogr. 2023, 32, 28–69. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Aquaculture: Relevance, distribution, impacts and spatial assessments—A review. Ocean Coast. Manag. 2016, 119, 244–266. [Google Scholar] [CrossRef]
- Kachelriess, D.; Wegmann, M.; Gollock, M.; Pettorelli, N. The application of remote sensing for marine protected area management. Ecol. Indic. 2014, 36, 169–177. [Google Scholar] [CrossRef]
- Kuenzer, C.; Ottinger, M.; Wegmann, M.; Guo, H.D.; Wang, C.L.; Zhang, J.Z.; Dech, S.; Wikelski, M. Earth observation satellite sensors for biodiversity monitoring: Potentials and bottlenecks. Int. J. Remote Sens. 2014, 35, 6599–6647. [Google Scholar] [CrossRef] [Green Version]
- Williamson, M.J.; Tebbs, E.J.; Dawson, T.P.; Jacoby, D.M.P. Satellite Remote Sensing in Shark and Ray Ecology, Conservation and Management. Front. Mar. Sci. 2019, 6, 135. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.J.; Colna, K.E.; El-Mezayen, M.M.; Laureano-Rosario, A.E.; Mendez-Lazaro, P.; Otis, D.B.; Toro-Farmer, G.; Vega-Rodriguez, M.; Muller-Karger, F.E. Satellite Remote Sensing for Coastal Management: A Review of Successful Applications. Environ. Manag. 2017, 60, 323–339. [Google Scholar] [CrossRef]
- Chen, X.J.; Tian, S.Q.; Chen, Y.; Liu, B.L. A modeling approach to identify optimal habitat and suitable fishing grounds for neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Fish. Bull. 2010, 108, 1–14. [Google Scholar]
- Song, L.M.; Zhou, Y.Q. Developing an integrated habitat index for bigeye tuna (Thunnus obesus) in the Indian Ocean based on longline fisheries data. Fish. Res. 2010, 105, 63–74. [Google Scholar] [CrossRef]
- Yen, K.; Lu, H.; Chang, Y.; Lee, M. Using remote-sensing data to detect habitat suitability for yellowfin tuna in the Western and Central Pacific Ocean. Int. J. Remote Sens. 2012, 33, 7507–7522. [Google Scholar] [CrossRef]
- Yu, W.; Chen, X.J.; Yi, Q.; Chen, Y.; Zhang, Y. Variability of Suitable Habitat of Western Winter-Spring Cohort for Neon Flying Squid in the Northwest Pacific under Anomalous Environments. PLoS ONE 2015, 10, e0122997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Cao, J.; Zou, X.R.; Chen, X.J.; Runnebaum, J. Modeling habitat suitability index for Chilean jack mackerel (Trachurus murphyi) in the South East Pacific. Fish. Res. 2016, 178, 47–60. [Google Scholar] [CrossRef]
- Su, N.-J.; Chang, C.-H.; Hu, Y.-T.; Chiang, W.-C.; Tseng, C.-T. Modeling the Spatial Distribution of Swordfish (Xiphias gladius) Using Fishery and Remote Sensing Data: Approach and Resolution. Remote Sens. 2020, 12, 947. [Google Scholar] [CrossRef] [Green Version]
- Zainuddin, M.; Saitoh, K.; Saitoh, S. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data. Fish. Oceanogr. 2008, 17, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Zwolinski, J.P.; Emmett, R.L.; Demer, D.A. Predicting habitat to optimize sampling of Pacific sardine (Sardinops sagax). ICES J. Mar. Sci. 2011, 68, 867–879. [Google Scholar] [CrossRef]
- Solanski, H.U.; Bhatpuria, D.; Chauhan, P. Signature analysis of satellite derived SSHa, SST and chlorophyll concentration and their linkage with marine fishery resources. J. Mar. Syst. 2015, 150, 12–21. [Google Scholar] [CrossRef]
- Setiawati, M.D.; Sambah, A.; Miura, F.; Tanaka, T.; As-syakur, A. Characterization of bigeye tuna habitat in the Southern Waters off Java-Bali using remote sensing data. Adv. Space Res. 2015, 55, 732–746. [Google Scholar] [CrossRef]
- Cornic, M.; Smith, B.L.; Kitchens, L.L.; Bremer, J.R.A.; Rooker, J.R. Abundance and habitat associations of tuna larvae in the surface water of the Gulf of Mexico. Hydrobiologia 2018, 806, 29–46. [Google Scholar] [CrossRef]
- Guzman, H.M.; Collatos, C.M.; Gomez, C.G. Movement, Behavior, and Habitat Use of Whale Sharks (Rhincodon typus) in the Tropical Eastern Pacific Ocean. Front. Mar. Sci. 2022, 9, 793248. [Google Scholar] [CrossRef]
- Fei, Y.; Yang, S.; Fan, W.; Shi, H.; Zhang, H.; Yuan, S. Relationship between the Spatial and Temporal Distribution of Squid-Jigging Vessels Operations and Marine Environment in the North Pacific Ocean. J. Mar. Sci. Eng. 2022, 10, 550. [Google Scholar] [CrossRef]
- Mugo, R.; Seitoh, S. Ensemble Modelling of Skipjack Tuna (Katsuwonus pelamis) Habitats in the Western North Pacific Using Satellite Remotely Sensed Data; a Comparative Analysis Using Machine-Learning Models. Remote Sens. 2020, 12, 2591. [Google Scholar] [CrossRef]
- Falkowski, P.; Ziemann, D.; Kolber, Z.; Bienfang, P.K. Role of eddy pumping in enhancing primary production in the ocean. Nature 1991, 352, 55–58. [Google Scholar] [CrossRef]
- McGillicuddy, D.J.; Robinson, A.R.; Siegel, D.A.; Jannasch, H.W.; Johnson, R.; Dickeys, T.; McNeil, J.; Michaels, A.F.; Knap, A.H. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 1998, 394, 263–266. [Google Scholar] [CrossRef]
- Bakun, A. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci. Mar. 2006, 70, 105–122. [Google Scholar] [CrossRef]
- Sabates, A.; Salat, J.; Raya, V.; Emelianov, M. Role of mesoscale eddies in shaping the spatial distribution of the coexisting Engraulis encrasicolus and Sardinella aurita larvae in the northwestern Mediterranean. J. Mar. Syst. 2013, 111, 108–119. [Google Scholar] [CrossRef]
- Arur, A.; Krishnan, P.; Kiruba-Sankar, R.; Suryavanshi, A.; Kumar, K.L.; Kantharajan, G.; Choudhury, S.B.; Manjulatha, C.; Babu, D.E. Feasibility of targeted fishing in mesoscale oceanic eddies: A study from commercial fishing grounds of Andaman and Nicobar Islands, India. Int. J. Remote Sens. 2020, 41, 5011–5045. [Google Scholar] [CrossRef]
- Gilbert, L.; Rouby, E.; Tew-Kai, E.; Spitz, J.; Peltier, H.; Quilfen, V. Spatiotemporal models highlight influence of oceanographic conditions on common dolphin bycatch risk in the Bay of Biscay. Mar. Ecol. Prog. Ser. 2021, 679, 195–212. [Google Scholar] [CrossRef]
- Prants, S.; Budyansky, M.; Uleysky, M. Identifying Lagrangian fronts with favourable fishery conditions. Deep Sea Res. Part I Oceanogr. Res. Pap. 2014, 90, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Mori, M.; Corney, S.P.; Melbourne-Thomas, J.; Welsford, D.C.; Klocker, A.; Ziegler, P.E. Using satellite altimetry to inform hypotheses of transport of early life stage of Patagonian toothfish on the Kerguelen Plateau. Ecol. Model. 2016, 340, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Cuttitta, A.; Torri, M.; Zarrad, R.; Zgozi, S.; Jarboui, O.; Quinci, E.M.; Hamza, M.; Abdulfatah, E.; Haddoud, D.; El Turki, A.; et al. Linking surface hydrodynamics to planktonic ecosystem: The case study of the ichthyoplanktonic assemblages in the Central Mediterranean Sea. Hydrobiologia 2018, 821, 191–214. [Google Scholar] [CrossRef]
- Budyansky, M.V.; Kulik, V.V.; Kivva, K.K.; Uleysky, M.Y.; Prants, S.V. Lagrangian Analysis of Pacific Waters in the Sea of Okhotsk Based on Satellite Data in Application to the Walleye Pollock Fishery. Izv. Atmos. Ocean. Phys. 2022, 58, 1427–1437. [Google Scholar] [CrossRef]
- Zagaglia, C.R.; Lorenzzetti, J.A.; Stech, J.L.; Zagaglia, C.R.; Lorenzzetti, J.A.; Stech, J.L. Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic. Remote Sens. Environ. 2004, 93, 267–281. [Google Scholar] [CrossRef]
- Meinert, C.R.; Clausen-Sparks, K.; Cornic, M.; Sutton, T.T.; Rooker, J.R. Taxonomic Richness and Diversity of Larval Fish Assemblages in the Oceanic Gulf of Mexico: Links to Oceanographic Conditions. Front. Mar. Sci. 2020, 7, 579. [Google Scholar] [CrossRef]
- Prants, S.; Budyansky, M.; Uleysky, M.; Kulik, V. Lagrangian fronts and saury catch locations in the Northwestern Pacific in 2004–2019. J. Mar. Syst. 2021, 222, 103605. [Google Scholar] [CrossRef]
- Howell, E.; Kobayashi; Parker, D.; Balazs, G.; Polovina, A. TurtleWatch: A tool to aid in the bycatch reduction of loggerhead turtles Caretta caretta in the Hawaii-based pelagic longline fishery. Endanger. Species Res. 2008, 5, 267–278. [Google Scholar] [CrossRef]
- Benson, S.R.; Eguchi, T.; Foley, D.G.; Forney, K.A.; Bailey, H.; Hitipeuw, C.; Samber, B.P.; Tapilatu, R.F.; Rei, V.; Ramohia, P.; et al. Large-scale movements and high-use areas of western Pacific leatherback turtles, Dermochelys coriacea. Ecosphere 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Jishad, M.; Sarangi, R.K.; Ratheesh, S.; Ali, S.M.; Sharma, R. Tracking fishing ground parameters in cloudy region using ocean colour and satellite-derived surface flow estimates: A study in the Bay of Bengal. J. Oper. Ocean. 2021, 14, 59–70. [Google Scholar] [CrossRef]
- Chang, Y.; Sun, C.; Chen, Y.; Yeh, S.; Dinardo, G. Habitat suitability analysis and identification of potential fishing grounds for swordfish, Xiphias gladius, in the South Atlantic Ocean. Int. J. Remote Sens. 2012, 33, 7523–7541. [Google Scholar] [CrossRef]
- Kamaruzzaman, Y.N.; Mustapha, M.A. An overview Assessment of the Effectiveness of Satellite Images and Remote Sensing in Predicting Potential Fishing Grounds and its Applicability for Rastrelliger kanagurta in the Malaysian EEZ off the South China Sea. Rev. Fish. Sci. Aquac. 2023, 31, 320–341. [Google Scholar] [CrossRef]
- Kruger, L.; Ramos, J.A.; Xavier, J.C.; Gremillet, D.; Gonzalez-Solis, J.; Petry, M.V.; Phillips, R.A.; Wanless, R.M.; Paiva, V.H. Projected distributions of Southern Ocean albatrosses, petrels and fisheries as a consequence of climatic change. Ecography 2018, 41, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Harford, W.J.; Karnauskas, M.; Walter, J.F.; Liu, H. Non-parametric modeling reveals environmental effects on bluefin tuna recruitment in Atlantic, Pacific, and Southern Oceans. Fish. Oceanogr. 2017, 26, 396–412. [Google Scholar] [CrossRef]
- Reguera-Rouzaud, N.; Diaz-Viloria, N.; Sanchez-Velasco, L.; Flores-Morales, A.L.; Pares-Sierra, A.; Aburto-Oropeza, O.; Munguia-Vega, A. Yellow snapper (Lutjanus argentiventris) connectivity in the Southern Gulf of California. Marine Biodiversity 2020, 50, 54. [Google Scholar] [CrossRef]
- Ryan, J.P.; Green, J.R.; Espinoza, E.; Hearn, A. Association of whale sharks (Rhincodon typus) with thermo-biological frontal systems of the eastern tropical Pacific. PLoS ONE 2017, 12, e0182599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taconet, M.; Kroodsma, D.; Fernandes, J.A. Global Atlas of AIS-Based Fishing Activity—Challenges and Opportunities; FAO: Rome, Italy, 2019. [Google Scholar]
- Salazar, J.E.; Benavides, I.F.; Cabrera, C.V.P.; Guzman, A.I.; Selvaraj, J.J. Generalized additive models with delayed effects and spatial autocorrelation patterns to improve the spatiotemporal prediction of the skipjack (Katsuwonus pelamis) distribution in the Colombian Pacific Ocean. Reg. Stud. Mar. Sci. 2021, 45, 101829. [Google Scholar] [CrossRef]
- Yu, W.; Chen, X.; Zhang, Y. Seasonal habitat patterns of jumbo flying squid Dosidicus gigas off Peruvian waters. J. Mar. Syst. 2019, 194, 41–51. [Google Scholar] [CrossRef]
- Polovina, J.J.; Kleiber, P.; Kobayashi, D.R. Application of TOPEX-POSEIDON satellite altimetry to simulate transport dynamics of larvae of spiny lobster, Panulirus marginatus, in the Northwestern Hawaiian Islands, 1993–1996. Fish. Bull. 1999, 97, 132–143. [Google Scholar]
- Griffin, D.A.; Wilkin, J.L.; Chubb, C.F.; Pearce, A.F.; Caputi, N. Mesoscale Oceanographic Data Analysis and Data Assimilative Modelling with Application to Western Australian Fisheries; Marine Research 2001 (Series: FRDC Project no. 1997/139); CSIRO: Canberra, Australia, 2001; pp. 1–52.
- Scales, K.L.; Hazen, E.L.; Jacox, M.G.; Bograd, S.J. Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures. Proc. Natl. Acad. Sci. USA 2018, 115, 7362–7367. [Google Scholar] [CrossRef] [Green Version]
- Hitchman, S.M.; Reyns, N.B.; Thompson, A.R. Larvae define spawning habitat of bocaccio rockfish Sebastes paucispinis within and around a large southern California marine reserve. Mar. Ecol. Prog. Ser. 2012, 465, 227. [Google Scholar] [CrossRef] [Green Version]
- Vestfals, C.D.; Mueter, F.J.; Hedstrom, K.S.; Laurel, B.J.; Petrik, C.M.; Duffy-Anderson, J.T.; Danielson, S.L. Modeling the dispersal of polar cod (Boreogadus saida) and saffron cod (Eleginus gracilis) early life stages in the Pacific Arctic using a biophysical transport model. Prog. Oceanogr. 2021, 196, 102571. [Google Scholar] [CrossRef]
- Priya, R.K.S.; Balaguru, B.; Ramakrishnan, S. Improved exploration of fishery resources through the integration of remotely sensed merged sea level anomaly, chlorophyll concentration, and sea surface. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Online, 23–26 September 2013; Volume 888, p. 888805. [Google Scholar] [CrossRef]
- Balaguru, B.; Ramakrishnan, S.S.; Vidhya, R.; Thanabalan, P. A comparative study on utilization of multi-sensor satellite data to detect Potential Fishing Zone (PFZ). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-8, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Arur, A.; Krishnan, P.; Grinson, G.; Goutham Bharathi, M.P.; Kaliyamoorthy, M.; Hareef Baba Shaeb, K.; Suryavanshi, A.S.; Srinivasa Kumar, T.; Joshi, A.K. The influence of mesoscale eddies on a commercial fishery in the coastal waters of the Andaman and Nicobar Islands, India. Int. J. Remote Sens. 2014, 35, 6418–6443. [Google Scholar] [CrossRef] [Green Version]
- Hsu, T.Y.; Chang, Y.; Lee, M.A.; Wu, R.F.; Hsiao, S.C. Predicting Skipjack Tuna Fishing Grounds in the Western and Central Pacific Ocean Based on High-Spatial-Temporal-Resolution Satellite Data. Remote Sens. 2021, 13, 861. [Google Scholar] [CrossRef]
- Hazen, E.L.; Palacios, D.M.; Forney, K.A.; Howell, E.A.; Becker, E.; Hoover, A.L.; Irvine, L.; DeAngelis, M.; Bograd, S.J.; Mate, B.R.; et al. WhaleWatch: A dynamic management tool for predicting blue whale density in the California Current. J. Appl. Ecol. 2017, 54, 1415–1428. [Google Scholar] [CrossRef]
- Hazen, E.L.; Scales, K.L.; Maxwell, S.M.; Briscoe, D.K.; Welch, H.; Bograd, S.J.; Bailey, H.; Benson, S.R.; Eguchi, T.; Dewar, H.; et al. A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci. Adv. 2018, 4, eaarar300. [Google Scholar] [CrossRef] [Green Version]
- Salama, A.; Willis, J.; Srinivasan, M. Mapping Sea Level from Space. In Climate. NATO Science for Peace and Security Series C: Environmental Security; Linkov, I., Bridges, T., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 419–431. [Google Scholar] [CrossRef]
- Vignudelli, S.; Scozzari, A.; Abileah, R.; Gómez-Enri, J.; Benveniste, J.; Cipollini, P. Water surface elevation in coastal and inland waters using satellite radar altimetry. In Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment; Maggioni, V., Massari, C., Eds.; Elsevier Press: Amsterdam, The Netherlands, 2019; pp. 87–127. [Google Scholar] [CrossRef]
- Goni, G.; Demaria, M.; Knaff, J.; Sampson, C.; Price, J.; Mehra, A.; Ginis, I.; Lin, I.-I.; Sandery, P.; Buarque, S.; et al. The Ocean Observing System for Tropical Cyclone Intensification Forecasts and Studies. In Proceedings of the OceanObs’ 09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009; p. 2. [Google Scholar]
- Hossain, F.; Maswood, M.; Siddique-E-Akbor, A.; Wondmage, Y. A Promising Radar Altimetry Satellite System for Operational Flood Forecasting in Flood-Prone Bangladesh. IEEE Geosci. Remote Sens. Mag. 2014, 2, 27–36. [Google Scholar] [CrossRef]
- Siddique-E-Akbor, A.; Hossain, F.; Lee, H.; Shum, C. Inter-comparison study of water level estimates derived from hydrodynamic–hydrologic model and satellite altimetry for a complex deltaic environment. Remote Sens. Environ. 2011, 15, 1522–1531. [Google Scholar] [CrossRef]
- Climate Change Initiative Coastal Sea Level Team. Coastal sea level anomalies and associated trends from Jason satellite altimetry over 2002–2018. Sci. Data 2020, 7, 357. [Google Scholar] [CrossRef]
- Woodworth, P.L.; Menéndez, M.; Gehrels, W.R. Evidence for century-timescale acceleration in mean sea levels and for recent changes in extreme sea levels. Surv. Geophys. 2014, 35, 1121–1151. [Google Scholar]
- Cazenave, A.; Llovel, W. Contemporary sea level rise. Annu. Rev. Mar. Sci. 2010, 2, 145–173. [Google Scholar] [CrossRef] [Green Version]
- International Altimetry Team. Altimetry for the future: Building on 25 years of progress. Adv. Space Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Lin, I.-I.; Goni, G.J.; Knaff, J.A.; Forbes, C.; Ali, M.M. Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat. Hazards 2013, 66, 1481–1500. [Google Scholar] [CrossRef]
- Chen, S.; Curcic, M. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations. Ocean Model. 2016, 103, 161–176. [Google Scholar] [CrossRef]
- Song, Y.T.; Ji, C.; Fu, L.; Zlotnicki, V.; Shum, C.K.; Yi, Y.; Hjorleifsdottir, V. The 26 December 2004 tsunami source estimated from satellite radar altimetry and seismic waves. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.H.F.; Scharroo, R.; Titov, V.; Arcas, D.; Arbic, B. Satellite Altimeters Measure Tsunami. Oceanography 2015, 18, 11–13. [Google Scholar] [CrossRef] [Green Version]
- Titov, V.; Song, Y.T.; Tang, L.; Bernard, E.N.; Bar-Sever, Y.; Wei, Y. Consistent Estimates of Tsunami Energy Show Promise for Improved Early Warning. In Global Tsunami Science: Past and Future; Geist, E.L., Fritz, H.M., Rabinovich, A.B., Tanioka, Y., Eds.; Pageoph Topical Volumes; Birkhäuser: Cham, Switzerland, 2016; Volume I. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Leben, R.R.; Godin, O.A.; Gica, E.; Titov, V.V.; Haines, B.J.; Desai, S.D. Could satellite altimetry have improved early detection and warning of the 2011 Tohoku tsunami? Geophys. Res. Lett. 2012, 39, L15605. [Google Scholar] [CrossRef] [Green Version]
- Sandwell, D.T.; Smith, W.H.F.; Gille, S.; Kappel, E.; Jayne, S.; Soofi, K.; Coakley, B.; Géli, L. Bathymetry from space: Rationale and requirements for a new, high-resolution altimetric mission. Comptes Rendus Geosci. 2006, 338, 14–15. [Google Scholar] [CrossRef] [Green Version]
- Gille, S.T.; Metzger, E.J.; Tokmakian, R. Seafloor topography and ocean circulation. Oceanography 2004, 17, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Vinogradova, N.; Hamlington, B. Sea level science and applications support coastal resilience. Eos, 29 June 2022; 103. [Google Scholar] [CrossRef]
- Cazenave, A.; Gouzenes, Y.; Birol, F.; Leger, F.; Passaro, M.; Calafat, F.M.; Shaw, A.; Nino, F.; Legeais, J.F.; Oelsmann, J.; et al. Sea level along the world’s coastlines can be measured by a network of virtual altimetry stations. Commun. Earth Environ. 2022, 3, 117. [Google Scholar] [CrossRef]
- Benveniste, J.; Cazenave, A.; Vignudelli, S.; Fenoglio-Marc, L.; Shah, R.; Almar, R.; Andersen, O.; Birol, F.; Bonnefond, P.; Bouffard, J.; et al. Requirements for a Coastal Hazards Observing System. Front. Mar. Sci. 2019, 6, 348. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivasan, M.; Tsontos, V. Satellite Altimetry for Ocean and Coastal Applications: A Review. Remote Sens. 2023, 15, 3939. https://doi.org/10.3390/rs15163939
Srinivasan M, Tsontos V. Satellite Altimetry for Ocean and Coastal Applications: A Review. Remote Sensing. 2023; 15(16):3939. https://doi.org/10.3390/rs15163939
Chicago/Turabian StyleSrinivasan, Margaret, and Vardis Tsontos. 2023. "Satellite Altimetry for Ocean and Coastal Applications: A Review" Remote Sensing 15, no. 16: 3939. https://doi.org/10.3390/rs15163939
APA StyleSrinivasan, M., & Tsontos, V. (2023). Satellite Altimetry for Ocean and Coastal Applications: A Review. Remote Sensing, 15(16), 3939. https://doi.org/10.3390/rs15163939