Using Double-Layer Patch-Based Contrast for Infrared Small Target Detection
Abstract
:1. Introduction
2. Methodology
2.1. Double-Layer Local Contrast Measure
- : the difference between the gray mean value of the center layer and the i-th middle patch;
- : the difference between the gray mean value of the center layer and the j-th background patch;
- : the gray mean values of the center layer;
- : the gray mean values of the i-th middle patch;
- : the gray mean values of the j-th background patch.
2.2. Target Enhancement
- ×: the multiplication operation;
- : the contrast measure between the center layer and the middle layer along the i-th direction;
- : the contrast measure between the center layer and the background layer along the j-th direction.
2.3. Threshold Operation
- : the mean value of the saliency map;
- : the standard deviation of the saliency map;
- k: the adjustable parameter.
2.4. Detection Ability Analysis
3. Experimental Results and Analysis
3.1. Datasets
3.2. Evaluation Metrics
- : the standard deviation of the raw image;
- : the standard deviation of the saliency map;
- k: the adjustable parameter.
- : the maximum gray value of the target;
- : the gray mean of the surrounding background;
- : the standard deviation of the raw image.
3.3. Experimental Results and Comparisons
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qin, Y.; Li, B. Effective infrared small target detection utilizing a novel local contrast method. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1890–1894. [Google Scholar] [CrossRef]
- Deng, H.; Sun, X.; Liu, M.; Ye, C.; Zhou, X. Entropy-based window selection for detecting dim and small infrared targets. Pattern Recognit. 2017, 61, 66–77. [Google Scholar] [CrossRef]
- Shi, Y.; Wei, Y.; Yao, H.; Pan, D.; Xiao, G. High-boost-based multiscale local contrast measure for infrared small target detection. IEEE Geosci. Remote Sens. Lett. 2017, 15, 33–37. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Asymmetric contextual modulation for infrared small target detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2021; pp. 950–959. [Google Scholar]
- Zhang, T.; Li, L.; Cao, S.; Pu, T.; Peng, Z. Attention-Guided Pyramid Context Networks for Detecting Infrared Small Target Under Complex Background. IEEE Trans. Aerosp. Electron. Syst. 2023, 1–13. [Google Scholar] [CrossRef]
- Li, B.; Xiao, C.; Wang, L.; Wang, Y.; Lin, Z.; Li, M.; An, W.; Guo, Y. Dense Nested Attention Network for Infrared Small Target Detection. IEEE Trans. Image Process. 2023, 32, 1745–1758. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, R.; Yang, Y.; Bai, H.; Zhang, J.; Guo, J. ISNET: Shape matters for infrared small target detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 877–886. [Google Scholar]
- Zhu, H.; Ni, H.; Liu, S.; Xu, G.; Deng, L. Tnlrs: Target-aware non-local low-rank modeling with saliency filtering regularization for infrared small target detection. IEEE Trans. Image Process. 2020, 29, 9546–9558. [Google Scholar] [CrossRef]
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef]
- Han, J.; Liu, C.; Liu, Y.; Luo, Z.; Zhang, X.; Niu, Q. Infrared small target detection utilizing the enhanced closest-mean background estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 645–662. [Google Scholar] [CrossRef]
- Lu, R.; Yang, X.; Li, W.; Fan, J.; Li, D.; Jing, X. Robust infrared small target detection via multidirectional derivative-based weighted contrast measure. IEEE Geosci. Remote Sens. Lett. 2020, 19, 7000105. [Google Scholar] [CrossRef]
- Tom, V.T.; Peli, T.; Leung, M.; Bondaryk, J.E. Morphology-based algorithm for point target detection in infrared backgrounds. In Proceedings of the Signal and Data Processing of Small Targets 1993, Orlando, FL, USA, 22 October 1993; SPIE: Bellingham, WA, USA, 1993; Volume 1954, pp. 2–11. [Google Scholar]
- Bai, X.; Zhou, F. Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recognit. 2010, 43, 2145–2156. [Google Scholar] [CrossRef]
- Wei, Y.; You, X.; Li, H. Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognit. 2016, 58, 216–226. [Google Scholar] [CrossRef]
- Xia, C.; Li, X.; Zhao, L.; Shu, R. Infrared small target detection based on multiscale local contrast measure using local energy factor. IEEE Geosci. Remote Sens. Lett. 2019, 17, 157–161. [Google Scholar] [CrossRef]
- Guan, X.; Peng, Z.; Huang, S.; Chen, Y. Gaussian scale-space enhanced local contrast measure for small infrared target detection. IEEE Geosci. Remote Sens. Lett. 2019, 17, 327–331. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, L.; Zhang, T.; Cao, S.; Peng, Z. Infrared small target detection via non-convex rank approximation minimization joint l 2, 1 norm. Remote Sens. 2018, 10, 1821. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Peng, Z. Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Attentional local contrast networks for infrared small target detection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9813–9824. [Google Scholar] [CrossRef]
- Wang, K.; Du, S.; Liu, C.; Cao, Z. Interior Attention-Aware Network for Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Xu, H.; Zhong, S.; Zhang, T.; Zou, X. Multiscale Multilevel Residual Feature Fusion for Real-Time Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Chen, C.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 2013, 52, 574–581. [Google Scholar] [CrossRef]
- Han, J.; Liang, K.; Zhou, B.; Zhu, X.; Zhao, J.; Zhao, L. Infrared small target detection utilizing the multiscale relative local contrast measure. IEEE Geosci. Remote Sens. Lett. 2018, 15, 612–616. [Google Scholar] [CrossRef]
- Nie, J.; Qu, S.; Wei, Y.; Zhang, L.; Deng, L. An infrared small target detection method based on multiscale local homogeneity measure. Infrared Phys. Technol. 2018, 90, 186–194. [Google Scholar] [CrossRef]
- Du, P.; Hamdulla, A. Infrared small target detection using homogeneity-weighted local contrast measure. IEEE Geosci. Remote Sens. Lett. 2019, 17, 514–518. [Google Scholar] [CrossRef]
- Han, J.; Ma, Y.; Zhou, B.; Fan, F.; Liang, K.; Fang, Y. A robust infrared small target detection algorithm based on human visual system. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2168–2172. [Google Scholar]
- Li, Y.; Li, Z.; Liu, B.; Liu, Y. Effective and robust infrared small target detection based on directional improved structure tensor. Infrared Phys. Technol. 2022, 127, 104420. [Google Scholar] [CrossRef]
- Wu, L.; Ma, Y.; Fan, F.; Wu, M.; Huang, J. A double-neighborhood gradient method for infrared small target detection. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1476–1480. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Z.; Kong, D.; He, Y. Infrared dim and small target detection based on stable multisubspace learning in heterogeneous scene. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5481–5493. [Google Scholar] [CrossRef]
- Han, J.; Moradi, S.; Faramarzi, I.; Liu, C.; Zhang, H.; Zhao, Q. A local contrast method for infrared small-target detection utilizing a tri-layer window. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1822–1826. [Google Scholar] [CrossRef]
- Kong, X.; Yang, C.; Cao, S.; Li, C.; Peng, Z. Infrared small target detection via nonconvex tensor fibered rank approximation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5000321. [Google Scholar] [CrossRef]
- Hui, B.; Song, Z.; Fan, H.; Zhong, P.; Hu, W.; Zhang, X.; Lin, J.; Su, H.; Jin, W.; Zhang, Y.; et al. A Dataset for Dim-Small Target Detection and Tracking of Aircraft in Infrared Image Sequences; Science DB: Beijing, China, 2019. [Google Scholar]
- Zhao, E.; Dong, L.; Dai, H. Infrared Maritime Small Target Detection Based on Multidirectional Uniformity and Sparse-Weight Similarity. Remote Sens. 2022, 14, 5492. [Google Scholar] [CrossRef]
Sequence | LCM | MPCM | RLCM | TLLCM | DNGM | NTFRA | Proposed |
---|---|---|---|---|---|---|---|
1 | 240.94 | 1845.99 | 1080.15 | 2184.67 | 3772.89 | 1474.69 | 4215.13 |
2 | 58.49 | 950.69 | 403.05 | 626.12 | 2359.66 | Inf | 2604.84 |
3 | 314.59 | 3164.05 | 1459.16 | 3032.86 | 5308.44 | 1191.45 | 4990.02 |
4 | 356.98 | 3990.88 | 1315.13 | 3579.49 | 6760.54 | 825.14 | 7668.34 |
5 | 466.24 | 4056.40 | 1012.37 | 3217.08 | 5972.86 | 1921.52 | 6642.68 |
Sequence | LCM | MPCM | RLCM | TLLCM | DNGM | NTFRA | Proposed |
---|---|---|---|---|---|---|---|
1 | 1.74 | 24.44 | 11.95 | 28.15 | 50.39 | 2.16 | 57.53 |
2 | 0.97 | 46.13 | 18.59 | 29.47 | 120.20 | NaN | 132.83 |
3 | 1.93 | 36.86 | 15.53 | 34.33 | 60.62 | 9.12 | 57.31 |
4 | 1.53 | 26.83 | 7.07 | 23.00 | 43.90 | 0.80 | 50.58 |
5 | 1.97 | 26.02 | 6.13 | 20.67 | 39.46 | 2.89 | 43.94 |
Sequence | LCM | MPCM | RLCM | TLLCM | DNGM | NTFRA | Proposed |
---|---|---|---|---|---|---|---|
1 | 0.1516 | 0.1565 | 1.3761 | 0.9792 | 0.1334 | 1.1413 | 0.1373 |
2 | 0.1571 | 0.1650 | 2.1729 | 1.4925 | 0.1382 | 1.7675 | 0.1425 |
3 | 0.1659 | 0.1722 | 1.5658 | 1.0839 | 0.1458 | 1.7414 | 0.1512 |
4 | 0.1668 | 0.1693 | 1.8931 | 1.3146 | 0.1436 | 8.4082 | 0.1485 |
5 | 0.1676 | 0.1752 | 1.9141 | 1.3334 | 0.1496 | 3.2581 | 0.1546 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Wei, Y.; Wang, Y.; Yao, H.; Chen, D. Using Double-Layer Patch-Based Contrast for Infrared Small Target Detection. Remote Sens. 2023, 15, 3839. https://doi.org/10.3390/rs15153839
Liu L, Wei Y, Wang Y, Yao H, Chen D. Using Double-Layer Patch-Based Contrast for Infrared Small Target Detection. Remote Sensing. 2023; 15(15):3839. https://doi.org/10.3390/rs15153839
Chicago/Turabian StyleLiu, Liping, Yantao Wei, Yue Wang, Huang Yao, and Di Chen. 2023. "Using Double-Layer Patch-Based Contrast for Infrared Small Target Detection" Remote Sensing 15, no. 15: 3839. https://doi.org/10.3390/rs15153839
APA StyleLiu, L., Wei, Y., Wang, Y., Yao, H., & Chen, D. (2023). Using Double-Layer Patch-Based Contrast for Infrared Small Target Detection. Remote Sensing, 15(15), 3839. https://doi.org/10.3390/rs15153839