Spatio-Temporal Distribution Characteristics of Glacial Lakes in the Altai Mountains with Climate Change from 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Image Supervision and Classification Based on GEE
2.3.2. Glacial Lake Boundary Extraction
2.3.3. Sen + Mann–Kendall Trend Analysis
2.3.4. MCE CA–Markov
2.3.5. Pearson Correlation Coefficient Method
3. Results
3.1. Glacial Lake Distribution and Changes
3.2. Characteristics of Various Sizes of Glacier Lakes
3.3. Characteristics of the Elevational Distribution of Glacial Lakes
3.4. Analysis of the Driving Force Affecting Glacial Lake Change
3.4.1. The Overall Pattern of Climate Change
3.4.2. Sen + Mann–Kendall Test of Temperature and Precipitation Trends
3.5. Land-Cover Type Changes
3.6. Future Glacier Lake Trends
4. Discussion
4.1. The Effect of Glacier Changes on Glacial Lakes
4.2. Response of Glacial Lakes to Climate Change
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shugar, D.H.; Burr, A.; Haritashya, U.K.; Kargel, J.S.; Watson, C.S.; Kennedy, M.C.; Bevington, A.R.; Betts, R.A.; Harrison, S.; Strattman, K. Rapid Worldwide Growth of Glacial Lakes since 1990. Nat. Clim. Chang. 2020, 10, 939–945. [Google Scholar] [CrossRef]
- Roe, G.H.; Baker, M.B.; Herla, F. Centennial Glacier Retreat as Categorical Evidence of Regional Climate Change. Nat. Geosci. 2017, 10, 95–99. [Google Scholar] [CrossRef]
- Farinotti, D.; Round, V.; Huss, M.; Compagno, L.; Zekollari, H. Large Hydropower and Water-Storage Potential in Future Glacier-Free Basins. Nature 2019, 575, 341–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrivick, J.L.; Tweed, F.S. A Global Assessment of the Societal Impacts of Glacier Outburst Floods. Glob. Planet. Chang. 2016, 144, 1–16. [Google Scholar] [CrossRef]
- Morelli, A.; Johansen, T.G.; Pidcock, R.; Harold, J.; Pirani, A.; Gomis, M.; Lorenzoni, I.; Haughey, E.; Coventry, K. Co-Designing Engaging and Accessible Data Visualisations: A Case Study of the IPCC Reports. Clim. Chang. 2021, 168, 26. [Google Scholar] [CrossRef]
- Wang, X.; Chai, K.; Liu, S.; Wei, J.; Jiang, Z.; Liu, Q. Changes of Glaciers and Glacial Lakes Implying Corridor-Barrier Effects and Climate Change in the Hengduan Shan, Southeastern Tibetan Plateau. J. Glaciol. 2017, 63, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Mir, R.A. Glacier and Glacial Lake Classification for Change Detection Studies Using Satellite Data: A Case Study from Baspa Basin, Western Himalaya. Geocarto Int. 2019, 34, 391–414. [Google Scholar] [CrossRef]
- Zheng, G.; Allen, S.K.; Bao, A.; Ballesteros-Cánovas, J.A.; Huss, M.; Zhang, G.; Li, J.; Yuan, Y.; Jiang, L.; Yu, T.; et al. Increasing Risk of Glacial Lake Outburst Floods from Future Third Pole Deglaciation. Nat. Clim. Chang. 2021, 11, 411–417. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-Wide Glacier Mass Balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Worni, R.; Huggel, C.; Stoffel, M. Glacial Lakes in the Indian Himalayas—From an Area-Wide Glacial Lake Inventory to on-Site and Modeling Based Risk Assessment of Critical Glacial Lakes. Sci. Total Environ. 2013, 468–469, S71–S84. [Google Scholar] [CrossRef]
- Wang, W.; Xiang, Y.; Gao, Y.; Lu, A.; Yao, T. Rapid Expansion of Glacial Lakes Caused by Climate and Glacier Retreat in the Central Himalayas. Hydrol. Process. 2015, 29, 859–874. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Q.; Ren, X.; Wang, X.; Yan, X.; Li, X.; Wang, L.; Bao, L. Climatic Change Characteristics towards the “Warming–Wetting” Trend in the Pan-Central-Asia Arid Region. Atmosphere 2022, 13, 467. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, F.; Zhao, H.; Wang, J.; Wang, N. Recent Changes of Glacial Lakes in the High Mountain Asia and Its Potential Controlling Factors Analysis. Remote Sens. 2021, 13, 3757. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent Climate and Hydrological Changes in a Mountain–Basin System in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Y.; Li, Z.; Fang, G.; Xiang, Y.; Ji, H. Why Are Glacial Lakes in the Eastern Tianshan Mountains Expanding at an Accelerated Rate? J. Geogr. Sci. 2023, 33, 121–150. [Google Scholar] [CrossRef]
- Luo, R.; Yuan, Q.; Yue, L.; Shi, X. Monitoring Recent Lake Variations Under Climate Change Around the Altai Mountains Using Multimission Satellite Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1374–1388. [Google Scholar] [CrossRef]
- Klinge, M.; Schlütz, F.; Zander, A.; Hülle, D.; Batkhishig, O.; Lehmkuhl, F. Late Pleistocene Lake Level, Glaciation and Climate Change in the Mongolian Altai Deduced from Sedimentological and Palynological Archives. Quat. Res. 2021, 99, 168–189. [Google Scholar] [CrossRef]
- Zhao, F.; Feng, S.; Xie, F.; Zhu, S.; Zhang, S. Extraction of Long Time Series Wetland Information Based on Google Earth Engine and Random Forest Algorithm for a Plateau Lake Basin—A Case Study of Dianchi Lake, Yunnan Province, China. Ecol. Indic. 2023, 146, 109813. [Google Scholar] [CrossRef]
- Li, N.; Chu, H.; Qi, Y.; Li, C.; Ping, X.; Sun, Y.; Jiang, Z. Alpha and Beta Diversity of Birds along Elevational Vegetation Zones on the Southern Slope of Altai Mountains: Implication for Conservation. Glob. Ecol. Conserv. 2019, 19, e00643. [Google Scholar] [CrossRef]
- Jiang, S.; Nie, Y.; Liu, Q.; Wang, J.; Liu, L.; Hassan, J.; Liu, X.; Xu, X. Glacier Change, Supraglacial Debris Expansion and Glacial Lake Evolution in the Gyirong River Basin, Central Himalayas, between 1988 and 2015. Remote Sens. 2018, 10, 986. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Chen, X.; Cui, P.; Li, Y.; Yang, Z.; Qi, Y. Changes in Glacial Lakes and Glaciers of Post-1986 in the Poiqu River Basin, Nyalam, Xizang (Tibet). Geomorphology 2007, 88, 298–311. [Google Scholar] [CrossRef]
- Muñoz, R.; Huggel, C.; Frey, H.; Cochachin, A.; Haeberli, W. Glacial Lake Depth and Volume Estimation Based on a Large Bathymetric Dataset from the Cordillera Blanca, Peru. Earth Surf. Process. Landf. 2020, 45, 1510–1527. [Google Scholar] [CrossRef]
- Harrison, S.; Kargel, J.S.; Huggel, C.; Reynolds, J.; Shugar, D.H.; Betts, R.A.; Emmer, A.; Glasser, N.; Haritashya, U.K.; Klimeš, J.; et al. Climate Change and the Global Pattern of Moraine-Dammed Glacial Lake Outburst Floods. Cryosphere 2018, 12, 1195–1209. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Bolch, T.; Allen, S.; Linsbauer, A.; Chen, W.; Wang, W. Glacial Lake Evolution and Glacier–Lake Interactions in the Poiqu River Basin, Central Himalaya, 1964–2017. J. Glaciol. 2019, 65, 347–365. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, W.; Qiao, W.; Wang, Q.; Hu, Y.; Wang, Z. Effect of Natural Conditions and Mining Activities on Vegetation Variations in Arid and Semiarid Mining Regions. Ecol. Indic. 2019, 103, 331–345. [Google Scholar] [CrossRef]
- Javed, S.; Shahzad, M.I.; Abbas, S.; Nazeer, M. Long-Term Variability of Atmospheric Visual Range (1980–2020) over Diverse Topography of Pakistan. Remote Sens. 2023, 15, 46. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Li, J.; Xie, S.; Liu, Y.; Sheng, Y.; Luan, Z. Examining the Expansion of Spartina Alterniflora in Coastal Wetlands Using an MCE-CA-Markov Model. Front. Mar. Sci. 2022, 9, 964172. [Google Scholar] [CrossRef]
- Hao, L.; He, S.; Zhou, J.; Zhao, Q.; Lu, X. Prediction of the Landscape Pattern of the Yancheng Coastal Wetland, China, Based on XGBoost and the MCE-CA-Markov Model. Ecol. Indic. 2022, 145, 109735. [Google Scholar] [CrossRef]
- Mohamed, A.; Worku, H. Simulating Urban Land Use and Cover Dynamics Using Cellular Automata and Markov Chain Approach in Addis Ababa and the Surrounding. Urban. Clim. 2020, 31, 100545. [Google Scholar] [CrossRef]
- Tang, F.; Fu, M.; Wang, L.; Zhang, P. Land-Use Change in Changli County, China: Predicting Its Spatio-Temporal Evolution in Habitat Quality. Ecol. Indic. 2020, 117, 106719. [Google Scholar] [CrossRef]
- Lei, J.; Chen, Y.; Li, L.; Chen, Z.; Chen, X.; Wu, T.; Li, Y. Spatiotemporal Change of Habitat Quality in Hainan Island of China Based on Changes in Land Use. Ecol. Indic. 2022, 145, 109707. [Google Scholar] [CrossRef]
- Qin, Y.; Yan, Q.; Cai, J. Evolution and Dynamic Simulation of Landscape Pattern in the South Part of Poyang Lake Wetland. J. Yangtze River Sci. Res. Inst. 2020, 37, 171–178. [Google Scholar] [CrossRef]
- Faichia, C.; Tong, Z.; Zhang, J.; Liu, X.; Kazuva, E.; Ullah, K.; Al-Shaibah, B. Using RS Data-Based CA–Markov Model for Dynamic Simulation of Historical and Future LUCC in Vientiane, Laos. Sustainability 2020, 12, 8410. [Google Scholar] [CrossRef]
- Abdelkarim, A.; Alogayell, H.M.; Alkadi, I.I.; Youssef, I. Spatial–Temporal Prediction Model for Land Cover of the Rural–Urban Continuum Axis between Ar-Riyadh and Al-Kharj Cities in KSA in the Year of 2030 Using the Integration of CA–Markov Model, GIS-MCA, and AHP. Appl. Geomat. 2022, 14, 501–525. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Matlhodi, B.; Kenabatho, P.K.; Parida, B.P.; Maphanyane, J.G. Analysis of the Future Land Use Land Cover Changes in the Gaborone Dam Catchment Using CA-Markov Model: Implications on Water Resources. Remote Sens. 2021, 13, 2427. [Google Scholar] [CrossRef]
- Bishara, A.J.; Hittner, J.B. Testing the Significance of a Correlation with Nonnormal Data: Comparison of Pearson, Spearman, Transformation, and Resampling Approaches. Psychol. Methods 2012, 17, 399–417. [Google Scholar] [CrossRef] [Green Version]
- Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; et al. The GAMDAM Glacier Inventory: A Quality-Controlled Inventory of Asian Glaciers. Cryosphere 2015, 9, 849–864. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Enomoto, H.; Ohata, T.; Kitabata, H.; Kadota, T.; Hirabayashi, Y. Glacier Mass Balance and Its Potential Impacts in the Altai Mountains over the Period 1990–2011. J. Hydrol. 2017, 553, 662–677. [Google Scholar] [CrossRef]
- Chipman, J. A Multisensor Approach to Satellite Monitoring of Trends in Lake Area, Water Level, and Volume. Remote Sens. 2019, 11, 158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yao, T.; Xie, H.; Wang, W.; Yang, W. An Inventory of Glacial Lakes in the Third Pole Region and Their Changes in Response to Global Warming. Glob. Planet. Chang. 2015, 131, 148–157. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Gao, T.; An, B.; Yao, T. An Integrative Method for Identifying Potentially Dangerous Glacial Lakes in the Himalayas. Sci. Total Environ. 2022, 806, 150442. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Guo, H.; Allen, S.; Kargel, J.S.; Haritashya, U.K.; Watson, C.S. Annual 30 m Dataset for Glacial Lakes in High Mountain Asia from 2008 to 2017. Earth Syst. Sci. Data 2021, 13, 741–766. [Google Scholar] [CrossRef]
- Dou, X.; Fan, X.; Wang, X.; Yunus, A.P.; Xiong, J.; Tang, R.; Lovati, M.; van Westen, C.; Xu, Q. Spatio-Temporal Evolution of Glacial Lakes in the Tibetan Plateau over the Past 30 Years. Remote Sens. 2023, 15, 416. [Google Scholar] [CrossRef]
- Wang, X.; Wu, W.K. Wide expansion of glacial lakes in Tianshan Mountains during 1990–2010. Acta Geogr. Sin. 2013, 68, 983–993. (In Chinese) [Google Scholar]
- Duguay, C.R.; Flato, G.M.; Jeffries, M.O.; Ménard, P.; Morris, K.; Rouse, W.R. Ice-Cover Variability on Shallow Lakes at High Latitudes: Model Simulations and Observations. Hydrol. Process. 2003, 17, 3465–3483. [Google Scholar] [CrossRef]
- Thompson, R.; Kamenik, C.; Schmidt, R. Ultra-Sensitive Alpine Lakes and Climate Change. J. Limnol. 2005, 64, 139. [Google Scholar] [CrossRef] [Green Version]
- Butcher, J.B.; Nover, D.; Johnson, T.E.; Clark, C.M. Sensitivity of Lake Thermal and Mixing Dynamics to Climate Change. Clim. Chang. 2015, 129, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Preston, D.L.; Caine, N.; McKnight, D.M.; Williams, M.W.; Hell, K.; Miller, M.P.; Hart, S.J.; Johnson, P.T.J. Climate Regulates Alpine Lake Ice Cover Phenology and Aquatic Ecosystem Structure. Geophys. Res. Lett. 2016, 43, 5353–5360. [Google Scholar] [CrossRef]
- Kainz, M.J.; Ptacnik, R.; Rasconi, S.; Hager, H.H. Irregular Changes in Lake Surface Water Temperature and Ice Cover in Subalpine Lake Lunz, Austria. Inland. Waters 2017, 7, 27–33. [Google Scholar] [CrossRef]
- Roberts, J.J.; Fausch, K.D.; Schmidt, T.S.; Walters, D.M. Thermal Regimes of Rocky Mountain Lakes Warm with Climate Change. PLoS ONE 2017, 12, e0179498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadro, S.; Sickman, J.O.; Melack, J.M.; Skeen, K. Effects of Climate Variability on Snowmelt and Implications for Organic Matter in a High-Elevation Lake. Water Resour. Res. 2018, 54, 4563–4578. [Google Scholar] [CrossRef]
- Walther, M.; Dashtseren, A.; Kamp, U.; Temujin, K.; Meixner, F.; Pan, C.G.; Gansukh, Y. Glaciers, Permafrost and Lake Levels at the Tsengel Khairkhan Massif, Mongolian Altai, During the Late Pleistocene and Holocene. Geosciences 2017, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Wang, Y.; Liu, S.; Pu, J.; Shen, Y.; Lu, A. Recent Glacial Retreat in High Asia in China and Its Impact on Water Resource in Northwest China. Sci. China Ser. D Earth Sci. 2004, 47, 1065–1075. [Google Scholar] [CrossRef]
- Pavelková Řičánková, V.; Robovský, J.; Riegert, J. Ecological Structure of Recent and Last Glacial Mammalian Faunas in Northern Eurasia: The Case of Altai-Sayan Refugium. PLoS ONE 2014, 9, e85056. [Google Scholar] [CrossRef]
- Song, C.; Sheng, Y.; Ke, L.; Nie, Y.; Wang, J. Glacial Lake Evolution in the Southeastern Tibetan Plateau and the Cause of Rapid Expansion of Proglacial Lakes Linked to Glacial-Hydrogeomorphic Processes. J. Hydrol. 2016, 540, 504–514. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.; Robinson, T.R.; Dunning, S.; Rachel Carr, J.; Westoby, M. Glacial Lake Outburst Floods Threaten Millions Globally. Nat. Commun. 2023, 14, 487. [Google Scholar] [CrossRef]
- Gu, C.; Li, S.; Liu, M.; Hu, K.; Wang, P. Monitoring Glacier Lake Outburst Flood (GLOF) of Lake Merzbacher Using Dense Chinese High-Resolution Satellite Images. Remote Sens. 2023, 15, 1941. [Google Scholar] [CrossRef]
- Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. Clim. Chang. 2003, 59, 5–31. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as Sentinels of Climate Change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, P.; Ali, S.N.; Champati Ray, P.K. Glacier-Glacial Lake Interactions and Glacial Lake Development in the Central Himalaya, India (1994–2017). J. Earth Sci. 2021, 32, 1563–1574. [Google Scholar] [CrossRef]
- Tao, J.; Zhao, W. Spatial changes of the glacial lakes in the western Nyainqentanglha Range. Arid. Zone Res. 2021, 38, 618–628. (In Chinese) [Google Scholar] [CrossRef]
- Liu, W.; Xie, C.; Zhao, L.; Li, R.; Liu, G.; Wang, W.; Liu, H.; Wu, T.; Yang, G.; Zhang, Y.; et al. Rapid Expansion of Lakes in the Endorheic Basin on the Qinghai-Tibet Plateau since 2000 and Its Potential Drivers. CATENA 2021, 197, 104942. [Google Scholar] [CrossRef]
- Zhang, Y.; An, C.; Zheng, L.; Liu, L.; Zhang, W.; Lu, C.; Zhang, Y. Assessment of Lake Area in Response to Climate Change at Varying Elevations: A Case Study of Mt. Tianshan, Central Asia. Sci. Total Environ. 2023, 869, 161665. [Google Scholar] [CrossRef]
- Du, W.; Shi, N.; Xu, L.; Zhang, S.; Ma, D.; Wang, S. Monitoring the Spatiotemporal Difference in Glacier Elevation on Bogda Mountain from 2000 to 2017. Int. J. Environ. Res. Public Health 2021, 18, 6374. [Google Scholar] [CrossRef]
- Råman Vinnå, L.; Medhaug, I.; Schmid, M.; Bouffard, D. The Vulnerability of Lakes to Climate Change along an Altitudinal Gradient. Commun. Earth Env. 2021, 2, 35. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, J.; Zheng, L. Long-Term Change of Lake Water Storage and Its Response to Climate Change for Typical Lakes in Arid Xinjiang, China. Water 2023, 15, 1444. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Chen, J.; Ma, F.; Wang, T. Lake Expansion under the Groundwater Contribution in Qaidam Basin, China. Remote Sens. 2022, 14, 1756. [Google Scholar] [CrossRef]
- Tang, X.; Lv, X.; He, Y. Features of Climate Change and Their Effects on Glacier Snow Melting in Xinjiang, China. Comptes Rendus Geosci. 2013, 345, 93–100. [Google Scholar] [CrossRef]
- Li, M.; Zhu, L.; Wang, J.; Ju, J.; Liu, C.; Ma, Q.; Xu, T.; Qiao, B.; Wang, X. Holocene Lake Evolution and Glacial Fluctuations Indicated by Carbonate Minerals and Their Isotopic Compositions in the Sediments of a Glacial Melt Recharge Lake on the Northwestern Tibetan Plateau. Front. Earth Sci. 2021, 9, 656281. [Google Scholar] [CrossRef]
- Medeu, A.R.; Popov, N.V.; Blagovechshenskiy, V.P.; Askarova, M.A.; Medeu, A.A.; Ranova, S.U.; Kamalbekova, A.; Bolch, T. Moraine-Dammed Glacial Lakes and Threat of Glacial Debris Flows in South-East Kazakhstan. Earth-Sci. Rev. 2022, 229, 103999. [Google Scholar] [CrossRef]
- Ahemaitihali, A.; Dong, Z. Spatiotemporal Characteristics Analysis and Driving Forces Assessment of Flash Floods in Altay. Water 2022, 14, 331. [Google Scholar] [CrossRef]
Name | Formula | Meaning |
---|---|---|
Kstandard | The expectation value of N (m), which has the ability to maintain a certain number, but not the ability to maintain spatial location, is used to evaluate the comprehensive information change. | |
Kno | The expected value of N (n), which has neither the ability to maintain quantity, nor the ability to maintain spatial location, is used to evaluate the comprehensive information change. | |
Klocation | It is assumed that N (n), capable of keeping some quantity, but unable to keep space position, can be used as an expectation value, and that P (m), which can keep some quantity and space position completely, is considered as a true value for the evaluation of space-position information. | |
KlocationStrata | N (n), which has neither the ability to maintain quantity, nor the ability to maintain spatial location, is taken as the expected value, and K (m), which has both the ability to maintain quantity and the ability to completely maintain the spatial layer/region, is taken as the true value to evaluate the change in spatial location information. |
Year | The Northern Part | The Southern Part | ||
---|---|---|---|---|
Count | Area (km2) | Count | Area (km2) | |
2000 | 1571 | 407.67 | 1016 | 175.23 |
2005 | 1971 | 430.25 | 1231 | 217.01 |
2010 | 2372 | 368.52 | 1078 | 272.32 |
2015 | 2407 | 434.43 | 1145 | 265.32 |
2020 | 2591 | 374.55 | 1233 | 307.83 |
Year | The Northern Part | The Southern Part | ||
---|---|---|---|---|
Count | Area (km2) | Count | Area (km2) | |
2020 | 2591 | 374.55 | 1233 | 307.83 |
2025 | 2634 | 408.73 | 1312 | 343.96 |
2030 | 2730 | 428.73 | 1381 | 365.24 |
Glacial Lake | Glacier | Climate Factors | ||
---|---|---|---|---|
Count | Area | Precipitation | Temperature | |
Count | −0.676 ** | 0.065 | 0.378 | 0.287 |
Area | −0.867 ** | −0.136 | 0.171 | 0.25 |
Elevation (km) | Count | Area | |
---|---|---|---|
2.1–2.2 | Precipitation | 0.482 * | 0.012 |
Temperature | −0.351 | 0.010 | |
2.2–2.3 | Precipitation | 0.537 * | 0.232 |
Temperature | −0.283 | 0.104 | |
2.3–2.4 | Precipitation | 0.673 ** | 0.239 |
Temperature | −0.212 | −0.312 | |
3.2–3.3 | Precipitation | −0.398 | −0.311 |
Temperature | 0.476 * | 0.236 | |
3.3–3.4 | Precipitation | −0.356 | −0.442 * |
Temperature | 0.395 | 0.249 | |
3.4–3.5 | Precipitation | −0.386 | −0.387 |
Temperature | 0.486 * | 0.139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Zhong, T.; Zheng, J.; Meng, C.; Liu, Z. Spatio-Temporal Distribution Characteristics of Glacial Lakes in the Altai Mountains with Climate Change from 2000 to 2020. Remote Sens. 2023, 15, 3689. https://doi.org/10.3390/rs15143689
Wang N, Zhong T, Zheng J, Meng C, Liu Z. Spatio-Temporal Distribution Characteristics of Glacial Lakes in the Altai Mountains with Climate Change from 2000 to 2020. Remote Sensing. 2023; 15(14):3689. https://doi.org/10.3390/rs15143689
Chicago/Turabian StyleWang, Nan, Tao Zhong, Jianghua Zheng, Chengfeng Meng, and Zexuan Liu. 2023. "Spatio-Temporal Distribution Characteristics of Glacial Lakes in the Altai Mountains with Climate Change from 2000 to 2020" Remote Sensing 15, no. 14: 3689. https://doi.org/10.3390/rs15143689
APA StyleWang, N., Zhong, T., Zheng, J., Meng, C., & Liu, Z. (2023). Spatio-Temporal Distribution Characteristics of Glacial Lakes in the Altai Mountains with Climate Change from 2000 to 2020. Remote Sensing, 15(14), 3689. https://doi.org/10.3390/rs15143689