Cartography of the Solar System: Remote Sensing beyond Earth
1. Introduction
2. Topics in Planetary Mapping and Cartography
2.1. Mapping and Spectral Analysis
2.2. Data Processing and Data Products
2.3. Impact Crater and Feature Detection
2.4. Pose Estimation
2.5. Research Data Management
Author Contributions
Conflicts of Interest
References
- Semenzato, A.; Massironi, M.; Ferrari, S.; Galluzzi, V.; Rothery, D.A.; Pegg, D.L.; Pozzobon, R.; Marchi, S. An Integrated Geologic Map of the Rembrandt Basin, on Mercury, as a Starting Point for Stratigraphic Analysis. Remote Sens. 2020, 12, 3213. [Google Scholar] [CrossRef]
- Tognon, G.; Pozzobon, R.; Massironi, M.; Ferrari, S. Geologic Mapping and Age Determinations of Tsiolkovskiy Crater. Remote Sens. 2021, 13, 3619. [Google Scholar] [CrossRef]
- Ciazela, M.; Ciazela, J.; Pieterek, B. High Resolution Apparent Thermal Inertia Mapping on Mars. Remote Sens. 2021, 13, 3692. [Google Scholar] [CrossRef]
- Luo, Y.; Yan, J.; Li, F.; Li, B. Spatial Autocorrelation of Martian Surface Temperature and Its Spatio-Temporal Relationships with Near-Surface Environmental Factors across China’s Tianwen-1 Landing Zone. Remote Sens. 2021, 13, 2206. [Google Scholar] [CrossRef]
- Hess, M.; Wilhelm, T.; Wöhler, C.; Wohlfarth, K. Uncertainty Introduced by Darkening Agents in the Lunar Regolith: An Unmixing Perspective. Remote Sens. 2021, 13, 4702. [Google Scholar] [CrossRef]
- Hess, M.; Wöhler, C.; Berezhnoy, A.A.; Bishop, J.L.; Shevchenko, V.V. Dependence of the Hydration of the Lunar Surface on the Concentrations of TiO2, Plagioclase, and Spinel. Remote Sens. 2022, 14, 47. [Google Scholar] [CrossRef]
- Wohlfarth, K.; Wöhler, C. Wavelength-Dependent Seeing Systematically Changes the Normalized Slope of Telescopic Reflectance Spectra of Mercury. Remote Sens. 2022, 14, 405. [Google Scholar] [CrossRef]
- Schenk, P.M.; Beddingfield, C.B.; Bertrand, T.; Bierson, C.; Beyer, R.; Bray, V.J.; Cruikshank, D.; Grundy, W.M.; Hansen, C.; Hofgartner, J.; et al. Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon. Remote Sens. 2021, 13, 3476. [Google Scholar] [CrossRef]
- Tao, Y.; Xiong, S.; Conway, S.J.; Muller, J.-P.; Guimpier, A.; Fawdon, P.; Thomas, N.; Cremonese, G. Rapid Single Image-Based DTM Estimation from ExoMars TGO CaSSIS Images Using Generative Adversarial U-Nets. Remote Sens. 2021, 13, 2877. [Google Scholar] [CrossRef]
- Tao, Y.; Michael, G.; Muller, J.-P.; Conway, S.J.; Putri, A.R.D. Seamless 3D Image Mapping and Mosaicing of Valles Marineris on Mars Using Orbital HRSC Stereo and Panchromatic Images. Remote Sens. 2021, 13, 1385. [Google Scholar] [CrossRef]
- Marco Figuera, R.; Riedel, C.; Rossi, A.P.; Unnithan, V. Depth to Diameter Analysis on Small Simple Craters at the Lunar South Pole—Possible Implications for Ice Harboring. Remote Sens. 2022, 14, 450. [Google Scholar] [CrossRef]
- Zang, S.; Mu, L.; Xian, L.; Zhang, W. Semi-Supervised Deep Learning for Lunar Crater Detection Using CE-2 DOM. Remote Sens. 2021, 13, 2819. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, J. Crater Detection and Recognition Method for Pose Estimation. Remote Sens. 2021, 13, 3467. [Google Scholar] [CrossRef]
- Zhong, W.; Jiang, J.; Ma, Y. L2AMF-Net: An L2-Normed Attention and Multi-Scale Fusion Network for Lunar Image Patch Matching. Remote Sens. 2022, 14, 5156. [Google Scholar] [CrossRef]
- Nass, A.; Mühlbauer, M.; Heinen, T.; Böck, M.; Munteanu, R.; D’Amore, M.; Riedlinger, T.; Roatsch, T.; Strunz, G.; Helbert, J. Approach towards a Holistic Management of Research Data in Planetary Science—Use Case Study Based on Remote Sensing Data. Remote Sens. 2022, 14, 1598. [Google Scholar] [CrossRef]
- van Gasselt, S.; Nass, A. A Semantic View on Planetary Mapping—Investigating Limitations and Knowledge Modeling through Contextualization and Composition. Remote Sens. 2023, 15, 1616. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Gasselt, S.; Naß, A. Cartography of the Solar System: Remote Sensing beyond Earth. Remote Sens. 2023, 15, 3684. https://doi.org/10.3390/rs15143684
van Gasselt S, Naß A. Cartography of the Solar System: Remote Sensing beyond Earth. Remote Sensing. 2023; 15(14):3684. https://doi.org/10.3390/rs15143684
Chicago/Turabian Stylevan Gasselt, Stephan, and Andrea Naß. 2023. "Cartography of the Solar System: Remote Sensing beyond Earth" Remote Sensing 15, no. 14: 3684. https://doi.org/10.3390/rs15143684
APA Stylevan Gasselt, S., & Naß, A. (2023). Cartography of the Solar System: Remote Sensing beyond Earth. Remote Sensing, 15(14), 3684. https://doi.org/10.3390/rs15143684