A New Spatio-Temporal Selection Method for Estimating Upwelling Medium-Wave Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Data Example
2.2. Formal Description
- —number of images in the pixel training stack
- —time gap between images in the pixel training stack
- —the radius of restraint when searching for training pixels around a target pixel
- c—the total number of coincident measurements between potential training pixels and the target in the training stack
- —the number of training pixels selected for use in target estimation
- —the time period starting from prediction stack creation during which training selections remain valid.
2.3. Overall Accuracy Assessment
3. Results
3.1. Training Pixel Selection
3.2. Overall Accuracy Assessment
3.3. Image Assessment
3.4. Estimation Availability
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
STS | Spatio-Temporal Selection |
AHI | Advanced Himawari Imager |
MWIR | Medium-Wave Infra-Red |
VIIRS | Visible Infrared Imaging Radiometer Suite |
GOES | Geostationary Operational Environmental Satellite |
UTC | Coordinated Universal Time |
RMSE | Root Mean Square Error |
BT | Brightness Temperature |
References
- Hislop, S.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Haywood, A.; Nguyen, T.H. A fusion approach to forest disturbance mapping using time series ensemble techniques. Remote Sens. Environ. 2019, 221, 188–197. [Google Scholar] [CrossRef]
- Bhatta, B.; Saraswati, S.; Bandyopadhyay, D. Urban sprawl measurement from remote sensing data. Appl. Geogr. 2010, 30, 731–740. [Google Scholar] [CrossRef]
- Brunner, D.; Lemoine, G.; Bruzzone, L. Earthquake damage assessment of buildings using VHR optical and SAR imagery. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2403–2420. [Google Scholar] [CrossRef] [Green Version]
- Mas, J.F. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. Remote Sens. 1999, 20, 139–152. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliva, P.; Schroeder, W. Assessment of VIIRS 375m active fire detection product for direct burned area mapping. Remote Sens. Environ. 2015, 160, 144–155. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Freeborn, P.H.; Xu, W.; Govaerts, Y.; Beeby, R.; He, J.; Lattanzio, A.; Fisher, D.; Mullen, R. LSA SAF Meteosat FRP products—Part 1: Algorithms, product contents, and analysis. Atmos. Chem. Phys. 2015, 15, 13217–13239. [Google Scholar] [CrossRef] [Green Version]
- Koltunov, A.; Ustin, S.L.; Prins, E.M. On timeliness and accuracy of wildfire detection by the GOES WF-ABBA algorithm over California during the 2006 fire season. Remote Sens. Environ. 2012, 127, 194–209. [Google Scholar] [CrossRef]
- Calle, A.; Casanova, J.L.; González-Alonso, F. Impact of point spread function of MSG-SEVIRI on active fire detection. Int. J. Remote Sens. 2009, 30, 4567–4579. [Google Scholar] [CrossRef]
- Boyd, D.S.; Foody, G.M.; Curran, P.J. The relationship between the biomass of cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0–5.0 mµ). Int. J. Remote Sens. 1999, 20, 1017–1023. [Google Scholar] [CrossRef]
- Wickramasinghe, C.; Wallace, L.; Reinke, K.; Jones, S. Intercomparison of Himawari-8 AHI-FSA with MODIS and VIIRS active fire products. Int. J. Digit. Earth 2020, 13, 457–473. [Google Scholar] [CrossRef]
- Kang, Y.; Jang, E.; Im, J.; Kwon, C. A deep learning model using geostationary satellite data for forest fire detection with reduced detection latency. Giscience Remote Sens. 2022, 59, 2019–2035. [Google Scholar] [CrossRef]
- Maeda, N.; Tonooka, H. Early Stage Forest Fire Detection from Himawari-8 AHI Images Using a Modified MOD14 Algorithm Combined with Machine Learning. Sensors 2023, 23, 210. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Yu, J.; An, S.; Zhang, J.; Li, J.; Xu, D. Forest Fire Detection of FY-3D Using Genetic Algorithm and Brightness Temperature Change. Forests 2022, 13, 963. [Google Scholar] [CrossRef]
- Xie, Z.; Song, W.; Ba, R.; Li, X.; Xia, L. A spatiotemporal contextual model for forest fire detection using Himawari-8 satellite data. Remote Sens. 2018, 10, 1992. [Google Scholar] [CrossRef] [Green Version]
- Hally, B.; Wallace, L.; Reinke, K.; Jones, S. A broad-area method for the diurnal characterisation of upwelling medium wave infrared radiation. Remote Sens. 2017, 9, 167. [Google Scholar] [CrossRef] [Green Version]
- Roberts, G.; Wooster, M. Development of a multi-temporal Kalman filter approach to geostationary active fire detection & fire radiative power (FRP) estimation. Remote Sens. Environ. 2014, 152, 392–412. [Google Scholar] [CrossRef]
- Zhang, C.; Wan, J.; Xu, M.; Liu, S.; Sheng, H. Spatio-temporal fire detection based on brightness temperature change in Himawari-8 images. Int. J. Remote Sens. 2022, 43, 6333–6348. [Google Scholar] [CrossRef]
- Hally, B.; Wallace, L.; Reinke, K.; Jones, S.; Engel, C.; Skidmore, A. Estimating Fire Background Temperature at a Geostationary Scale—An Evaluation of Contextual Methods for AHI-8. Remote Sens. 2018, 10, 1368. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; York, A.M.; Boone, C.G.; Shrestha, M. Methodological Advances in the Spatial Analysis of Land Fragmentation. Prof. Geogr. 2013, 65, 512–526. [Google Scholar] [CrossRef]
- Gonzalez-Mathiesen, C.; Ruane, S.; March, A. Integrating wildfire risk management and spatial planning—A historical review of two Australian planning systems. Int. J. Disaster Risk Reduct. 2021, 53, 101984. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Okuyama, A.; Andou, A.; Date, K.; Hoasaka, K.; Mori, N.; Murata, H.; Tabata, T.; Takahashi, M.; Yoshino, R.; Bessho, K. Preliminary validation of Himawari-8/AHI navigation and calibration. Proc. Spie 2015, 9607, 96072E. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.J.; Kaneko, T.; He, J.; Zhang, T.; Fisher, D. Major advances in geostationary fire radiative power (FRP) retrieval over Asia and Australia stemming from use of Himarawi-8 AHI. Remote Sens. Environ. 2017, 193, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Wooster, M.J.; Roberts, G.; Freeborn, P.H. New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sens. Environ. 2010, 114, 1876–1895. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I. The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
CS Area | Start Date | End Date | UTC Hours | Sectors Modelled |
---|---|---|---|---|
sea | 2016-03-30 | 2016-04-29 | 02:00–02:50 | sea_b: [4450, 4499, 3050, 3099] |
05:00–05:50 | sea_c: [4500, 4549, 3050, 3099] | |||
14:00–14:50 | sea_e: [4400, 4449, 3100, 3149] | |||
23:00–23:50 | sea_f: [4450, 4499, 3100, 3149] | |||
sea_h: [4550, 4599, 3200, 3149] | ||||
sea_j: [4400, 4449, 3150, 3199] | ||||
sea_k: [4450, 4499, 3150, 3199] | ||||
nwa | 2016-10-23 | 2016-11-22 | 00:00–00:50 | nwa_b: [3650, 3699, 2000, 2049] |
03:00–03:50 | nwa_c: [3700, 3749, 2000, 2049] | |||
06:00–06:50 | nwa_e: [3600, 3649, 2050, 2099] | |||
15:00–15:50 | nwa_f: [3650, 3699, 2050, 2099] | |||
nwa_g: [3700, 3749, 2050, 2099] | ||||
nwa_p: [3650, 3699, 2150, 2199] | ||||
nwa_q: [3700, 3749, 2150, 2199] | ||||
bor | 2016-02-14 | 2016-03-15 | 01:00–01:50 | bor_a: [2600, 2649, 1400, 1449] |
04:00–04:50 | bor_f: [2650, 2699, 1450, 1499] | |||
07:00–07:50 | bor_g: [2700, 2749, 1450, 1499] | |||
16:00–16:50 | bor_h: [2750, 2799, 1450, 1499] | |||
bor_j: [2600, 2649, 1500, 1549] | ||||
bor_l: [2700, 2749, 1500, 1549] | ||||
bor_p: [2650, 2699, 1550, 1599] | ||||
thl | 2016-02-28 | 2016-03-29 | 02:00–02:50 | thl_a: [1800, 1849, 800, 849] |
05:00–05:50 | thl_c: [1900, 1949, 800, 849] | |||
08:00–08:50 | thl_j: [1800, 1849, 900, 949] | |||
17:00–17:50 | thl_k: [1850, 1899, 900, 949] | |||
thl_m: [1950, 1999, 900, 949] | ||||
thl_p: [1850, 1899, 950, 999] | ||||
thl_q: [1900, 1949, 950, 999] | ||||
chn | 2016-08-27 | 2016-09-26 | 01:00–01:50 | chn_a: [1000, 1049, 1600, 1649] |
04:00–04:50 | chn_b: [1050, 1099, 1600, 1649] | |||
07:00–07:50 | chn_e: [1000, 1049, 1650, 1699] | |||
16:00–16:50 | chn_g: [1100, 1149, 1650, 1699] | |||
chn_k: [1050, 1099, 1700, 1749] | ||||
chn_m: [1150, 1199, 1700, 1749] | ||||
chn_q: [1100, 1149, 1750, 1799] | ||||
jpn | 2016-05-03 | 2016-06-02 | 00:00–00:50 | jpn_b: [950, 999, 2500, 2549] |
03:00–03:50 | jpn_e: [900, 949, 2550, 2599] | |||
06:00–06:50 | jpn_f: [950, 999, 2550, 2599] | |||
15:00–15:50 | jpn_j: [900, 949, 2600, 2649] | |||
jpn_k: [950, 999, 2600, 2649] | ||||
jpn_n: [900, 949, 2650, 2699] | ||||
jpn_p: [950, 999, 2650, 2699] | ||||
sib | 2016-05-10 | 2016-06-09 | 01:00–01:50 | sib_b: [250, 299, 2000, 2049] |
04:00–04:50 | sib_d: [350, 399, 2000, 2049] | |||
07:00–07:50 | sib_j: [200, 249, 2100, 2149] | |||
16:00–16:50 | sib_l: [300, 349, 2100, 2149] | |||
sib_m: [350, 399, 2100, 2149] | ||||
sib_n: [200, 249, 2150, 2199] | ||||
sib_r: [350, 399, 2150, 2199] |
Anomalies Retained | Anomalies Removed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Context | STS | Context | STS | |||||||
Site | (K) | (K) | (K) | (K) | % | (K) | (K) | (K) | (K) | % |
sea | 0.004 | 1.328 | 0.006 | 1.066 | −19.7 | 0.014 | 1.144 | 0.011 | 0.849 | −25.8 |
nwa | 0.020 | 1.348 | 0.052 | 1.292 | −4.1 | 0.039 | 1.147 | 0.078 | 1.025 | −10.6 |
bor | 0.034 | 1.239 | 0.142 | 1.429 | 15.3 | 0.032 | 1.045 | 0.149 | 1.203 | 15.1 |
thl | 0.010 | 1.274 | 0.045 | 0.849 | −33.4 | 0.032 | 1.105 | 0.048 | 0.665 | −39.8 |
chn | 0.011 | 0.937 | 0.047 | 0.757 | −19.2 | −0.006 | 0.814 | 0.065 | 0.635 | −22.0 |
jpn | 0.024 | 1.576 | 0.027 | 1.213 | −23.0 | −0.013 | 1.413 | 0.018 | 1.040 | −26.4 |
sib | 0.008 | 1.541 | −0.021 | 2.139 | 38.8 | 0.017 | 1.327 | −0.005 | 1.779 | 34.0 |
Site | Total Pixel Obs | n BT Obs | % Context-Image | % STS-Image |
---|---|---|---|---|
sea | 2,142,472 | 1,253,867 | 93.96 | 120.17 |
nwa | 2,170,000 | 1,634,662 | 96.65 | 116.40 |
bor | 1,694,460 | 1,028,491 | 90.68 | 131.03 |
thl | 2,162,560 | 1,715,681 | 97.23 | 112.96 |
chn | 2,149,044 | 1,153,593 | 95.10 | 118.34 |
jpn | 1,754,724 | 725,493 | 90.68 | 119.36 |
sib | 2,168,264 | 801,329 | 90.19 | 117.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hally, B.; Wallace, L.; Reinke, K.; Jones, S. A New Spatio-Temporal Selection Method for Estimating Upwelling Medium-Wave Radiation. Remote Sens. 2023, 15, 3521. https://doi.org/10.3390/rs15143521
Hally B, Wallace L, Reinke K, Jones S. A New Spatio-Temporal Selection Method for Estimating Upwelling Medium-Wave Radiation. Remote Sensing. 2023; 15(14):3521. https://doi.org/10.3390/rs15143521
Chicago/Turabian StyleHally, Bryan, Luke Wallace, Karin Reinke, and Simon Jones. 2023. "A New Spatio-Temporal Selection Method for Estimating Upwelling Medium-Wave Radiation" Remote Sensing 15, no. 14: 3521. https://doi.org/10.3390/rs15143521
APA StyleHally, B., Wallace, L., Reinke, K., & Jones, S. (2023). A New Spatio-Temporal Selection Method for Estimating Upwelling Medium-Wave Radiation. Remote Sensing, 15(14), 3521. https://doi.org/10.3390/rs15143521