Few-Shot Object Detection in Remote Sensing Imagery via Fuse Context Dependencies and Global Features
Abstract
:1. Introduction
- This study innovatively proposes a few-shot remote sensing image object detection method based on meta-learning, which integrates the global features of the S and the enhanced contextual dependencies of the Q, improving the final feature representation ability and object detection performance.
- In the ME structure, a feature representation structure that takes into account the contextual long-distance dependencies of the Q was constructed, focusing on the regional similarity of the query features, and optimizing the encoding performance of the query features.
- In the RM, the global feature pyramid extraction (GFPE) module is constructed to enhance the global feature representation of the S. Simultaneously, a new fusion module of query meta-features and support features is designed, which enhances the salient representation ability after feature fusion.
2. Related Work
2.1. General Object Detection
2.2. Few-Shot Object Detection
3. Methods
3.1. Overall Framework
3.2. Meta-Feature Extractor
Algorithm 1 Graph convolutional unit (GCU) algorithm |
1: Input: A feature map X 2: Output: The enhanced context-dependent features representation 3: while in training(test) stage: do 4: // Step 1: The feature map X is projected into the graph structure to obtain the probability matrix Q, encoding feature Z and adjacency matrix A 5: Init W, Variance ← KMeans(n_clusters = V) (X) 6: probability matrix Q ← f (xij, ) encoding feature Z ← f () adjacency matrix A ← 7: // Step 2: The graph convolution operation, is a random weight matrix 8: ← f (A), 9: // Step 3: Reverse reprojection 10: 11: end while |
3.3. Reweighting Module
3.4. Feature Fusion Module
3.5. Loss Function
4. Experiment and Results
4.1. Datasets and Evaluation Metrics
4.2. Experiment Settings
4.3. Results on the NWPU VHR 10 Dataset
4.4. Results on the DIOR Dataset
5. Discussion
5.1. Ablation Experiment
5.2. Comprehensive Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tiwari, A.K.; Mishra, N.; Sharma, S. Analysis and Survey on Object Detection and Identification Techniques of Satellite Images. In Proceedings of the India International Science Festival, Delhi, India, 4–8 December 2015. [Google Scholar]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object Detection in Optical Remote Sensing Images: A Survey and a New Benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Wu, X.; Sahoo, D.; Hoi, S.C. Recent Advances in Deep Learning for Object Detection. Neurocomputing 2020, 396, 39–64. [Google Scholar] [CrossRef] [Green Version]
- Bhil, K.; Shindihatti, R.; Mirza, S.; Latkar, S.; Ingle, Y.S.; Shaikh, N.F.; Prabu, I.; Pardeshi, S.N. Recent Progress in Object Detection in Satellite Imagery: A Review. In Sustainable Advanced Computing: Select Proceedings of ICSAC 2021; Springer: Singapore, 2022; pp. 209–218. [Google Scholar]
- Pi, Y.; Nath, N.D.; Behzadan, A.H. Detection and Semantic Segmentation of Disaster Damage in UAV Footage. J. Comput. Civ. Eng. 2021, 35, 04020063. [Google Scholar] [CrossRef]
- Ciaramella, A.; Perrotta, F.; Pappone, G.; Aucelli, P.; Peluso, F.; Mattei, G. Environment Object Detection for Marine ARGO Drone by Deep Learning. In Proceedings of the Pattern Recognition, ICPR International Workshops and Challenges, Virtual Event, 10–15 January 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 121–129. [Google Scholar]
- Liu, H.; Yu, Y.; Liu, S.; Wang, W. A Military Object Detection Model of UAV Reconnaissance Image and Feature Visualization. Appl. Sci. 2022, 12, 12236. [Google Scholar] [CrossRef]
- Haris, M.; Hou, J.; Wang, X. Lane Lines Detection under Complex Environment by Fusion of Detection and Prediction Models. Transp. Res. Rec. 2022, 2676, 342–359. [Google Scholar] [CrossRef]
- Thayalan, S.; Muthukumarasamy, S. Multifocus Object Detector for Vehicle Tracking in Smart Cities Using Spatiotemporal Attention Map. J. Appl. Remote Sens. 2023, 17, 016504. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Song, J.; Xu, Y. Object Tracking Based on Satellite Videos: A Literature Review. Remote Sens. 2022, 14, 3674. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, Y.; Lin, C.; Jia, Y.; Li, Z.; Yang, X. Object Tracking in Satellite Videos Based on Correlation Filter with Multi-Feature Fusion and Motion Trajectory Compensation. Remote Sens. 2022, 14, 777. [Google Scholar] [CrossRef]
- He, Q.; Sun, X.; Yan, Z.; Li, B.; Fu, K. Multi-Object Tracking in Satellite Videos with Graph-Based Multitask Modeling. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Lei, L.; Zou, H. Multi-Scale Object Detection in Remote Sensing Imagery with Convolutional Neural Networks. ISPRS J. Photogramm. Remote Sens. 2018, 145, 3–22. [Google Scholar] [CrossRef]
- Fu, K.; Chang, Z.; Zhang, Y.; Xu, G.; Zhang, K.; Sun, X. Rotation-Aware and Multi-Scale Convolutional Neural Network for Object Detection in Remote Sensing Images. ISPRS J. Photogramm. Remote Sens. 2020, 161, 294–308. [Google Scholar] [CrossRef]
- Huang, Z.; Li, W.; Xia, X.-G.; Wu, X.; Cai, Z.; Tao, R. A Novel Nonlocal-Aware Pyramid and Multiscale Multitask Refinement Detector for Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–20. [Google Scholar] [CrossRef]
- Shivappriya, S.N.; Priyadarsini, M.J.P.; Stateczny, A.; Puttamadappa, C.; Parameshachari, B.D. Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function. Remote Sens. 2021, 13, 200. [Google Scholar] [CrossRef]
- Inglada, J. Automatic Recognition of Man-Made Objects in High Resolution Optical Remote Sensing Images by SVM Classification of Geometric Image Features. ISPRS J. Photogramm. Remote Sens. 2007, 62, 236–248. [Google Scholar] [CrossRef]
- Lei, Z.; Fang, T.; Huo, H.; Li, D. Rotation-Invariant Object Detection of Remotely Sensed Images Based on Texton Forest and Hough Voting. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1206–1217. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Xie, W.; Fang, Z.; Li, Y.; Du, Q. SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-Cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Networks. In Advances in Neural Information Processing Systems 28 (NIPS 2015); Curran Associates, Inc.: Dutchess County, NY, USA, 2015. [Google Scholar]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single Shot Multibox Detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Tian, S.; Kang, L.; Xing, X.; Li, Z.; Zhao, L.; Fan, C.; Zhang, Y. Siamese Graph Embedding Network for Object Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 602–606. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Liu, J.; Yuan, Y.; Raza, A.; Huo, H.; Fang, T. Object Relationship Graph Reasoning for Object Detection of Remote Sensing Images. In Proceedings of the 2021 6th International Conference on Image, Vision and Computing (ICIVC), Qingdao, China, 23–25 July 2021; pp. 43–48. [Google Scholar]
- Tian, S.; Kang, L.; Xing, X.; Tian, J.; Fan, C.; Zhang, Y. A Relation-Augmented Embedded Graph Attention Network for Remote Sensing Object Detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–18. [Google Scholar] [CrossRef]
- Tian, S.; Cao, L.; Kang, L.; Xing, X.; Tian, J.; Du, K.; Sun, K.; Fan, C.; Fu, Y.; Zhang, Y. A Novel Hybrid Attention-Driven Multistream Hierarchical Graph Embedding Network for Remote Sensing Object Detection. Remote Sens. 2022, 14, 4951. [Google Scholar] [CrossRef]
- Zhu, Z.; Sun, X.; Diao, W.; Chen, K.; Xu, G.; Fu, K. Invariant Structure Representation for Remote Sensing Object Detection Based on Graph Modeling. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Guo, W.; Yang, W.; Zhang, H.; Hua, G. Geospatial Object Detection in High Resolution Satellite Images Based on Multi-Scale Convolutional Neural Network. Remote Sens. 2018, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Goyal, V.; Singh, R.; Dhawley, M.; Kumar, A.; Sharma, S. Aerial Object Detection Using Deep Learning: A Review. In Computational Intelligence: Select Proceedings of InCITe 2022; Springer Nature: Singapore, 2023; Volume 968, pp. 81–92. [Google Scholar]
- Karlinsky, L.; Shtok, J.; Harary, S.; Schwartz, E.; Aides, A.; Feris, R.; Giryes, R.; Bronstein, A.M. Repmet: Representative-Based Metric Learning for Classification and Few-Shot Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June2019; pp. 5197–5206. [Google Scholar]
- Li, X.; Sun, Z.; Xue, J.-H.; Ma, Z. A Concise Review of Recent Few-Shot Meta-Learning Methods. Neurocomputing 2021, 456, 463–468. [Google Scholar] [CrossRef]
- Wu, A.; Zhao, S.; Deng, C.; Liu, W. Generalized and Discriminative Few-Shot Object Detection via SVD-Dictionary Enhancement. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021); Curran Associates, Inc.: Dutchess County, NY, USA, 2021; pp. 6353–6364. [Google Scholar]
- Han, G.; Ma, J.; Huang, S.; Chen, L.; Chellappa, R.; Chang, S.-F. Multimodal Few-Shot Object Detection with Meta-Learning Based Cross-Modal Prompting. arXiv 2022, arXiv:2204.07841. [Google Scholar]
- Hendrawan, A.; Gernowo, R.; Nurhayati, O.D.; Warsito, B.; Wibowo, A. Improvement Object Detection Algorithm Based on YoloV5 with BottleneckCSP. In Proceedings of the 2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), Solo, Indonesia, 3–5 November 2022; pp. 79–83. [Google Scholar]
- Liu, Z.; Gao, Y.; Wang, L.; Du, Q. Aircraft Target Detection in Satellite Remote Sensing Images Based on Improved YOLOv. In Proceedings of the 2022 International Conference on Cyber-Physical Social Intelligence (ICCSI), Nanjing, China, 18–21 November 2022; pp. 63–68. [Google Scholar]
- Yao, X.; Shen, H.; Feng, X.; Cheng, G.; Han, J. R2IPoints: Pursuing Rotation-Insensitive Point Representation for Aerial Object Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Iftikhar, S.; Zhang, Z.; Asim, M.; Muthanna, A.; Koucheryavy, A.; Abd El-Latif, A.A. Deep Learning-Based Pedestrian Detection in Autonomous Vehicles: Substantial Issues and Challenges. Electronics 2022, 11, 3551. [Google Scholar] [CrossRef]
- Balasubramaniam, A.; Pasricha, S. Object Detection in Autonomous Vehicles: Status and Open Challenges. arXiv 2022, arXiv:2201.07706. [Google Scholar]
- Purkait, P.; Zhao, C.; Zach, C. SPP-Net: Deep Absolute Pose Regression with Synthetic Views. arXiv 2017, arXiv:1712.03452. [Google Scholar]
- Sun, X.; Wu, P.; Hoi, S.C. Face Detection Using Deep Learning: An Improved Faster RCNN Approach. Neurocomputing 2018, 299, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H. Improving Faster R-CNN Framework for Fast Vehicle Detection. Math. Probl. Eng. 2019, 2019, 3808064. [Google Scholar] [CrossRef]
- Wu, S.; Yang, J.; Wang, X.; Li, X. Iou-Balanced Loss Functions for Single-Stage Object Detection. Pattern Recognit. Lett. 2022, 156, 96–103. [Google Scholar] [CrossRef]
- Zaidi, S.S.A.; Ansari, M.S.; Aslam, A.; Kanwal, N.; Asghar, M.; Lee, B. A Survey of Modern Deep Learning Based Object Detection Models. Digit. Signal Process. 2022, 126, 103514. [Google Scholar] [CrossRef]
- Qin, L.; Shi, Y.; He, Y.; Zhang, J.; Zhang, X.; Li, Y.; Deng, T.; Yan, H. ID-YOLO: Real-Time Salient Object Detection Based on the Driver’s Fixation Region. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15898–15908. [Google Scholar] [CrossRef]
- Luo, H.-W.; Zhang, C.-S.; Pan, F.-C.; Ju, X.-M. Contextual-YOLOV3: Implement Better Small Object Detection Based Deep Learning. In Proceedings of the 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 8–10 November 2019; pp. 134–141. [Google Scholar]
- Wang, G.; Ding, H.; Li, B.; Nie, R.; Zhao, Y. Trident-YOLO: Improving the Precision and Speed of Mobile Device Object Detection. IET Image Process. 2022, 16, 145–157. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Ye, F.; Li, Y. A Dual-Path Multihead Feature Enhancement Detector for Oriented Object Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Yin, Q.; Hu, Q.; Liu, H.; Zhang, F.; Wang, Y.; Lin, Z.; An, W.; Guo, Y. Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–18. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Guo, H.; Cheng, W.; Pan, T.; Yang, W. Mask OBB: A Semantic Attention-Based Mask Oriented Bounding Box Representation for Multi-Category Object Detection in Aerial Images. Remote Sens. 2019, 11, 2930. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Qin, Y.; Fu, R.; Gao, Y.; Liu, S.; Ye, Y. Remote Sensing Object Detection Based on Gated Context-Aware Module. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, S.; He, G.; Chen, H.-B.; Jing, N.; Wang, Q. Scale Adaptive Proposal Network for Object Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 864–868. [Google Scholar] [CrossRef]
- Ming, Q.; Miao, L.; Zhou, Z.; Dong, Y. CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Li, K.; Cheng, G.; Bu, S.; You, X. Rotation-Insensitive and Context-Augmented Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2017, 56, 2337–2348. [Google Scholar] [CrossRef]
- Wang, H.; Liao, Y.; Li, Y.; Fang, Y.; Ni, S.; Luo, Y.; Jiang, B. BDR-Net: Bhattacharyya Distance-Based Distribution Metric Modeling for Rotating Object Detection in Remote Sensing. IEEE Trans. Instrum. Meas. 2022, 72, 1–12. [Google Scholar] [CrossRef]
- Sun, X.; Wang, P.; Wang, C.; Liu, Y.; Fu, K. PBNet: Part-Based Convolutional Neural Network for Complex Composite Object Detection in Remote Sensing Imagery. ISPRS J. Photogramm. Remote Sens. 2021, 173, 50–65. [Google Scholar] [CrossRef]
- Li, J.; Tian, J.; Gao, P.; Li, L. Ship Detection and Fine-Grained Recognition in Large-Format Remote Sensing Images Based on Convolutional Neural Network. In Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2859–2862. [Google Scholar]
- Chen, S.; Wang, H.; Mukherjee, M.; Xu, X. Collaborative Learning-Based Network for Weakly Supervised Remote Sensing Object Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022. [Google Scholar] [CrossRef]
- Liu, Q.S.Y.; Chua, T.S.; Schiele, B. Meta-Transfer Learning for Few-Shot Learning. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Ding, Y.; Tian, X.; Yin, L.; Chen, X.; Liu, S.; Yang, B.; Zheng, W. Multi-Scale Relation Network for Few-Shot Learning Based on Meta-Learning. In Proceedings of the Computer Vision Systems: 12th International Conference, ICVS 2019, Thessaloniki, Greece, 23–25 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 343–352. [Google Scholar]
- Yu, Z.; Chen, L.; Cheng, Z.; Luo, J. Transmatch: A Transfer-Learning Scheme for Semi-Supervised Few-Shot Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 14–19 June 2020; pp. 12856–12864. [Google Scholar]
- Wang, Y.-X.; Ramanan, D.; Hebert, M. Meta-Learning to Detect Rare Objects. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 Octorber–2 November 2019; pp. 9925–9934. [Google Scholar]
- Xiao, Z.; Zhong, P.; Quan, Y.; Yin, X.; Xue, W. Few-Shot Object Detection with Feature Attention Highlight Module in Remote Sensing Images. In Proceedings of the 2020 International Conference on Image, Video Processing and Artificial Intelligence, Shanghai, China, 21–23 August 2020; Volume 11584, pp. 217–223. [Google Scholar]
- Zhang, Z.; Hao, J.; Pan, C.; Ji, G. Oriented Feature Augmentation for Few-Shot Object Detection in Remote Sensing Images. In Proceedings of the 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI), Fuzhou, China, 24–26 September 2021; pp. 359–366. [Google Scholar]
- Wang, L.; Zhang, S.; Han, Z.; Feng, Y.; Wei, J.; Mei, S. Diversity Measurement-Based Meta-Learning for Few-Shot Object Detection of Remote Sensing Images. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3087–3090. [Google Scholar]
- Zhang, Y.; Zhang, B.; Wang, B. Few-Shot Object Detection With Self-Adaptive Global Similarity and Two-Way Foreground Stimulator in Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7263–7276. [Google Scholar] [CrossRef]
- Zhu, D.; Guo, H.; Li, T.; Meng, Z. Fine-Tuning Faster-RCNN Tailored to Feature Reweighting for Few-Shot Object Detection. In Proceedings of the 5th International Conference on Control and Computer Vision, Xiamen, China, 19–21 August 2022; pp. 48–51. [Google Scholar]
- Liu, N.; Xu, X.; Celik, T.; Gan, Z.; Li, H.-C. Transformation-Invariant Network for Few-Shot Object Detection in Remote Sensing Images. arXiv 2023, arXiv:2303.06817. [Google Scholar]
- Li, X.; Deng, J.; Fang, Y. Few-Shot Object Detection on Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, J.; Huang, Z.; Wan, H.; Chang, P.; Li, Z.; Yao, B.; Wu, B.; Sun, L.; Xing, M. FSODS: A Lightweight Metalearning Method for Few-Shot Object Detection on SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Meng, G.; Guo, C.; Jiang, Z. Few-Shot Multi-Class Ship Detection in Remote Sensing Images Using Attention Feature Map and Multi-Relation Detector. Remote Sens. 2022, 14, 2790. [Google Scholar] [CrossRef]
- Liu, S.; Ma, A.; Pan, S.; Zhong, Y. An Effective Task Sampling Strategy Based on Category Generation for Fine-Grained Few-Shot Object Recognition. Remote Sens. 2023, 15, 1552. [Google Scholar] [CrossRef]
- Hou, K.; Wang, H.; Li, J. Few-Shot Object Detection Model Based on Transfer Learning and Convolutional Neural Network. Preprint 2022. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, S.; Guo, W.; Gu, Y. Few-Shot Aircraft Detection in Satellite Videos Based on Feature Scale Selection Pyramid and Proposal Contrastive Learning. Remote Sens. 2022, 14, 4581. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Q.; Wang, Y. Exploring Effective Knowledge Transfer for Few-Shot Object Detection. In Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 10–14 October 2022; pp. 6831–6839. [Google Scholar]
- Yang, Z.; Zhang, C.; Li, R.; Xu, Y.; Lin, G. Efficient Few-Shot Object Detection via Knowledge Inheritance. IEEE Trans. Image Process. 2022, 32, 321–334. [Google Scholar] [CrossRef]
- Kim, N.; Jang, D.; Lee, S.; Kim, B.; Kim, D.-S. Unsupervised Image Denoising with Frequency Domain Knowledge. arXiv 2021, arXiv:2111.14362, preprint. [Google Scholar]
- Han, K.; Wang, Y.; Xu, C.; Guo, J.; Xu, C.; Wu, E.; Tian, Q. GhostNets on Heterogeneous Devices via Cheap Operations. Int. J. Comput. Vis. 2022, 130, 1050–1069. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More Features from Cheap Operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 14–19 June 2020; pp. 1580–1589. [Google Scholar]
- Li, Y.; Gupta, A. Beyond Grids: Learning Graph Representations for Visual Recognition. In Advances in Neural Information Processing Systems 31 (NeurIPS 2018); Curran Associates, Inc.: Dutchess County, NY, USA, 2018; pp. 9225–9235. [Google Scholar]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The K-Means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Xiao, B.; Xu, B.; Bi, X.; Li, W. Global-Feature Encoding U-Net (GEU-Net) for Multi-Focus Image Fusion. IEEE Trans. Image Process. 2020, 30, 163–175. [Google Scholar] [CrossRef]
- Li, C.; Zhou, A.; Yao, A. Omni-Dimensional Dynamic Convolution. arXiv 2022, arXiv:2209.07947. [Google Scholar]
- Chen, H.; Jiang, D.; Sahli, H. Transformer Encoder with Multi-Modal Multi-Head Attention for Continuous Affect Recognition. IEEE Trans. Multimed. 2020, 23, 4171–4183. [Google Scholar] [CrossRef]
- Zhu, H.; Lee, K.A.; Li, H. Serialized Multi-Layer Multi-Head Attention for Neural Speaker Embedding. arXiv 2021, arXiv:2107.06493. [Google Scholar]
- Gevorgyan, Z. SIoU Loss: More Powerful Learning for Bounding Box Regression. arXiv 2022, arXiv:2205.12740. [Google Scholar]
- Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-Class Geospatial Object Detection and Geographic Image Classification Based on Collection of Part Detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132. [Google Scholar] [CrossRef]
- Jocher, G.; Stoken, A.; Borovec, J.; Changyu, L.; Hogan, A.; Diaconu, L.; Ingham, F.; Poznanski, J.; Fang, J.; Yu, L.U. Yolov5: V3.0. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 1 June 2023).
- Kang, B.; Liu, Z.; Wang, X.; Yu, F.; Feng, J.; Darrell, T. Few-Shot Object Detection via Feature Reweighting. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8420–8429. [Google Scholar]
- Wang, X.; Huang, T.E.; Darrell, T.; Gonzalez, J.E.; Yu, F. Frustratingly Simple Few-Shot Object Detection. arXiv 2020, arXiv:2003.06957. [Google Scholar]
- Zhao, Z.; Tang, P.; Zhao, L.; Zhang, Z. Few-Shot Object Detection of Remote Sensing Images via Two-Stage Fine-Tuning. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Zhu, P.; Jia, X.; Tang, X.; Jiao, L. Generalized Few-Shot Object Detection in Remote Sensing Images. ISPRS J. Photogramm. Remote Sens. 2023, 195, 353–364. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, C.; Liu, C.; Li, Z. Context Information Refinement for Few-Shot Object Detection in Remote Sensing Images. Remote Sens. 2022, 14, 3255. [Google Scholar] [CrossRef]
Stage | Output | Operator | Stride |
---|---|---|---|
Stem | 256 × 256 × 32 | Conv 3 × 3 | 2 |
L0 | 128 × 128 × 128 | Block | 2 |
128 × 128 × 128 | Block × 1 Cheap | 1 | |
128 × 128 × 128 | Concat | 1 | |
L1 | 64 × 64 × 256 | Block | 2 |
64 × 64 × 256 | Block × 1 Cheap | 1 | |
64 × 64 × 256 | Concat | 1 | |
L2 | 32 × 32 × 512 | Block | 2 |
32 × 32 × 512 | Block × 5 Cheap | 1 | |
32 × 32 × 512 | Concat | 1 | |
L3 | 16 × 16 × 1024 | Block | 2 |
16 × 16 × 1024 | Block × 5 Cheap | 1 | |
16 × 16 × 1024 | Concat | 1 |
Datasets | Data Collection | Image Numbers | Types | Resolution | Image Size | Base Classes: Novel Classes |
---|---|---|---|---|---|---|
NWPU VHR-10 | Google Earth/ISPRS Vaihingen dataset | 800 | 10 | 0.5–2.0 m | Long side: 500–1200 pixels | 7:3 |
DIOR | Google Earth | 23,463 | 20 | 0.5–30 m | 800 × 800 pixels | 15:5 |
Class | Shot | YOLOv5 | Faster R-CNN (ResNet101) | FSRW | FSODM | TFA | PAMS-Det | G-FS Det | CIR-FSD | SAGS-TFS | TINet | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Base Class Results | ||||||||||||
Ship | 0.80 | 0.88 | 0.77 | 0.72 | 0.86 | 0.88 | - | 0.91 | - | - | 0.91 | |
Storage tank | 0.52 | 0.49 | 0.80 | 0.71 | 0.89 | 0.89 | - | 0.88 | - | - | 0.90 | |
Basketball court | 0.58 | 0.56 | 0.51 | 0.72 | 0.89 | 0.90 | - | 0.91 | - | - | 0.91 | |
Ground track field | 0.99 | 1.00 | 0.94 | 0.91 | 0.99 | 0.99 | - | 0.99 | - | - | 1.00 | |
Harbor | 0.67 | 0.66 | 0.86 | 0.87 | 0.84 | 0.84 | - | 0.80 | - | - | 0.90 | |
Bridge | 0.56 | 0.57 | 0.77 | 0.76 | 0.78 | 0.80 | - | 0.87 | - | - | 0.90 | |
Vehicle | 0.70 | 0.74 | 0.38 | 0.76 | 0.87 | 0.89 | - | 0.89 | - | - | 0.90 | |
Mean | 0.69 | 0.70 | 0.76 | 0.78 | 0.87 | 0.88 | 0.89 | 0.89 | - | - | 0.92 | |
Novel Class Results | ||||||||||||
Airplane | 3 | 0.06 | 0.09 | 0.13 | 0.15 | 0.12 | 0.21 | - | 0.52 | 0.35 | - | 0.54 |
5 | 0.10 | 0.19 | 0.24 | 0.58 | 0.51 | 0.55 | - | 0.67 | 0.64 | - | 0.69 | |
10 | 0.18 | 0.20 | 0.20 | 0.60 | 0.60 | 0.61 | - | 0.71 | 0.66 | - | 0.68 | |
Baseball diamond | 3 | 0.14 | 0.19 | 0.12 | 0.57 | 0.61 | 0.76 | - | 0.79 | 0.76 | - | 0.80 |
5 | 0.20 | 0.23 | 0.39 | 0.84 | 0.78 | 0.88 | - | 0.88 | 0.82 | - | 0.87 | |
10 | 0.28 | 0.35 | 0.74 | 0.88 | 0.85 | 0.88 | - | 0.88 | 0.87 | - | 0.89 | |
Tennis court | 3 | 0.12 | 0.12 | 0.11 | 0.25 | 0.13 | 0.16 | - | 0.31 | 0.43 | - | 0.35 |
5 | 0.15 | 0.17 | 0.11 | 0.16 | 0.19 | 0.20 | - | 0.37 | 0.52 | - | 0.52 | |
10 | 0.15 | 0.17 | 0.26 | 0.48 | 0.49 | 0.50 | - | 0.53 | 0.64 | - | 0.62 | |
Mean | 3 | 0.11 | 0.13 | 0.12 | 0.32 | 0.29 | 0.37 | 0.49 | 0.54 | 0.51 | 0.56 | 0.56 |
5 | 0.15 | 0.20 | 0.24 | 0.53 | 0.49 | 0.55 | 0.56 | 0.64 | 0.66 | 0.64 | 0.69 | |
10 | 0.20 | 0.24 | 0.40 | 0.65 | 0.65 | 0.66 | 0.72 | 0.70 | 0.72 | 0.72 | 0.72 |
Class | Shot | YOLOv5 | Faster R-CNN (ResNet101) | FSRW | FSODM | TFA | PAMS-Det | G-FS Det | CIR-FSD | SAGS-TFS | TINet | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Base Class Results | ||||||||||||
Airport | 0.59 | 0.73 | 0.59 | 0.63 | 0.76 | 0.78 | - | 0.87 | - | - | 0.85 | |
Basketball court | 0.71 | 0.69 | 0.74 | 0.80 | 0.78 | 0.79 | - | 0.88 | - | - | 0.88 | |
Bridge | 0.26 | 0.26 | 0.29 | 0.32 | 0.52 | 0.52 | - | 0.55 | - | - | 0.56 | |
Chimney | 0.68 | 0.72 | 0.70 | 0.72 | 0.66 | 0.69 | - | 0.79 | - | - | 0.80 | |
Dam | 0.40 | 0.57 | 0.52 | 0.45 | 0.54 | 0.55 | - | 0.72 | - | - | 0.75 | |
Expressway service area | 0.55 | 0.59 | 0.63 | 0.63 | 0.66 | 0.67 | - | 0.86 | - | - | 0.87 | |
Expressway toll station | 0.45 | 0.45 | 0.48 | 0.60 | 0.60 | 0.62 | - | 0.78 | - | - | 0.69 | |
Golf course | 0.60 | 0.68 | 0.61 | 0.61 | 0.79 | 0.81 | - | 0.84 | - | - | 0.87 | |
Ground track field | 0.65 | 0.65 | 0.54 | 0.61 | 0.77 | 0.78 | - | 0.83 | - | - | 0.85 | |
Harbor | 0.31 | 0.31 | 0.52 | 0.43 | 0.50 | 0.50 | - | 0.57 | - | - | 0.56 | |
Overpass | 0.46 | 0.45 | 0.49 | 0.46 | 0.50 | 0.51 | - | 0.64 | - | - | 0.65 | |
Ship | 0.10 | 0.10 | 0.33 | 0.50 | 0.66 | 0.67 | - | 0.72 | - | - | 0.75 | |
Stadium | 0.65 | 0.67 | 0.52 | 0.45 | 0.75 | 0.76 | - | 0.77 | - | - | 0.81 | |
Storage tank | 0.21 | 0.21 | 0.26 | 0.43 | 0.55 | 0.57 | - | 0.70 | - | - | 0.72 | |
Vehicle | 0.17 | 0.19 | 0.29 | 0.39 | 0.52 | 0.54 | - | 0.56 | - | - | 0.54 | |
Mean | 0.45 | 0.48 | 0.50 | 0.54 | 0.63 | 0.65 | 0.71 | 0.74 | - | - | 0.74 | |
Novel Class Results | ||||||||||||
Airplane | 5 | 0.02 | 0.03 | 0.09 | 0.09 | 0.13 | 0.14 | - | 0.20 | 0.17 | - | 0.21 |
10 | 0.08 | 0.09 | 0.15 | 0.16 | 0.17 | 0.17 | - | 0.20 | 0.24 | - | 0.23 | |
20 | 0.09 | 0.09 | 0.19 | 0.22 | 0.24 | 0.25 | - | 0.27 | 0.33 | - | 0.35 | |
Baseball field | 5 | 0.09 | 0.09 | 0.33 | 0.27 | 0.51 | 0.54 | - | 0.50 | 0.50 | - | 0.49 |
10 | 0.27 | 0.31 | 0.45 | 0.46 | 0.53 | 0.55 | - | 0.55 | 0.51 | - | 0.51 | |
20 | 0.30 | 0.35 | 0.52 | 0.50 | 0.56 | 0.58 | - | 0.62 | 0.53 | - | 0.64 | |
Tennis court | 5 | 0.10 | 0.12 | 0.47 | 0.57 | 0.24 | 0.24 | - | 0.50 | 0.62 | - | 0.63 |
10 | 0.12 | 0.13 | 0.54 | 0.60 | 0.41 | 0.41 | - | 0.50 | 0.63 | - | 0.66 | |
20 | 0.20 | 0.21 | 0.55 | 0.66 | 0.50 | 0.50 | - | 0.55 | 0.63 | - | 0.68 | |
Train station | 5 | 0.00 | 0.00 | 0.09 | 0.11 | 0.13 | 0.17 | - | 0.24 | 0.17 | - | 0.18 |
10 | 0.00 | 0.02 | 0.07 | 0.14 | 0.15 | 0.17 | - | 0.23 | 0.22 | - | 0.25 | |
20 | 0.02 | 0.04 | 0.18 | 0.16 | 0.21 | 0.23 | - | 0.28 | 0.28 | - | 0.30 | |
Windmill | 5 | 0.01 | 0.01 | 0.13 | 0.19 | 0.25 | 0.31 | - | 0.20 | 0.23 | - | 0.31 |
10 | 0.10 | 0.12 | 0.18 | 0.24 | 0.30 | 0.34 | - | 0.36 | 0.24 | - | 0.40 | |
20 | 0.12 | 0.21 | 0.26 | 0.29 | 0.33 | 0.36 | - | 0.37 | 0.35 | - | 0.39 | |
Mean | 5 | 0.04 | 0.05 | 0.22 | 0.25 | 0.25 | 0.28 | 0.31 | 0.33 | 0.34 | 0.29 | 0.36 |
10 | 0.11 | 0.13 | 0.28 | 0.32 | 0.31 | 0.33 | 0.37 | 0.38 | 0.37 | 0.38 | 0.41 | |
20 | 0.15 | 0.18 | 0.34 | 0.36 | 0.37 | 0.38 | 0.40 | 0.43 | 0.42 | 0.43 | 0.47 |
Baseline | FE | GFPE | GCU | FFM | mAP | ||
---|---|---|---|---|---|---|---|
3-Shot | 5-Shot | 10-Shot | |||||
√ | 0.32 | 0.51 | 0.62 | ||||
√ | √ | 0.36 | 0.54 | 0.64 | |||
√ | √ | √ | 0.48 | 0.60 | 0.68 | ||
√ | √ | √ | √ | 0.52 | 0.64 | 0.69 | |
√ | √ | √ | √ | √ | 0.56 | 0.69 | 0.72 |
Model | FSODM | TFA | G-FSDet | CIR-FSD | SAGS-TFS | TINet | Ours |
---|---|---|---|---|---|---|---|
Params (M) | 81.25 | 58.21 | 74.08/60.19 | 63.35 | 49.58 | - | 65.01 |
FLOPs (G) | 216.38 | 154.70 | - | 158.98 | 327.17 | - | 197.89 |
Time (per image) | 0.15 | 0.28 | - | 0.35 | 0.13 | 0.25 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Ma, G.; Sui, H.; Zhang, Y.; Zhang, H.; Zhou, Y. Few-Shot Object Detection in Remote Sensing Imagery via Fuse Context Dependencies and Global Features. Remote Sens. 2023, 15, 3462. https://doi.org/10.3390/rs15143462
Wang B, Ma G, Sui H, Zhang Y, Zhang H, Zhou Y. Few-Shot Object Detection in Remote Sensing Imagery via Fuse Context Dependencies and Global Features. Remote Sensing. 2023; 15(14):3462. https://doi.org/10.3390/rs15143462
Chicago/Turabian StyleWang, Bin, Guorui Ma, Haigang Sui, Yongxian Zhang, Haiming Zhang, and Yuan Zhou. 2023. "Few-Shot Object Detection in Remote Sensing Imagery via Fuse Context Dependencies and Global Features" Remote Sensing 15, no. 14: 3462. https://doi.org/10.3390/rs15143462
APA StyleWang, B., Ma, G., Sui, H., Zhang, Y., Zhang, H., & Zhou, Y. (2023). Few-Shot Object Detection in Remote Sensing Imagery via Fuse Context Dependencies and Global Features. Remote Sensing, 15(14), 3462. https://doi.org/10.3390/rs15143462