Shipborne Multi-Function Radar Working Mode Recognition Based on DP-ATCN
Abstract
:1. Introduction
- (1)
- We propose a method for MFR working mode recognition based on SDR-DP-ATCN, which obtains intra-PDW features and inter-PDW temporal features simultaneously by combining CBAM and ShakeDrop regularization. It effectively reduces unnecessary information transmission, enhances network robustness and generalization ability, and significantly improves the accuracy of MFR working mode recognition.
- (2)
- We utilize a secondary correction module to extract long-temporal features and correct the MFR working mode recognition results. It improves the accuracy of MFR working mode recognition and increases the efficiency of information acquisition for the reconnaissance system.
- (3)
- Extensive experiments are conducted to demonstrate the robustness and effectiveness of the proposed method in complex electromagnetic environments, such as missing or spurious pulses.
2. Related Work
3. Problem Formulation
4. Dual-Path Time Convolution Attention Network
4.1. Introduction of Overall Network Structure
4.2. Pre-Recognition Module Based on SDR-DP-ATCN
4.2.1. Temporal Feature Extraction Based on ShakeDrop-Regularized TCN
4.2.2. Feature Extraction Based on CBAM
4.2.3. Feature Aggregation and Pre-Recognition Module
4.3. The Secondary Correction Module
4.4. Loss Function
5. Experiment
5.1. Data Set Introduction
5.2. Training Settings
5.3. Test Results
5.4. Ablation Study
5.5. Comparison of the Proposed Method with Other Algorithms
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weber, M.E.; Cho, J.Y.N.; Thomas, H.G. Command and Control for Multifunction Phased Array Radar. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5899–5912. [Google Scholar] [CrossRef]
- Li, Z.; Perera, S.; Zhang, Y.; Zhang, G.; Doviak, R. Phased-Array Radar System Simulator (PASIM): Development and Simulation Result Assessment. Remote Sens. 2019, 11, 422. [Google Scholar] [CrossRef] [Green Version]
- Stailey, J.E.; Hondl, K.D. Multifunction Phased Array Radar for Aircraft and Weather Surveillance. Proc. IEEE 2016, 104, 649–659. [Google Scholar] [CrossRef]
- Haigh, K.; Andrusenko, J. Cognitive Electronic Warfare: An Artificial Intelligence Approach; Artech: Morristown, NJ, USA, 2021; Available online: http://ieeexplore.ieee.org/document/9538834 (accessed on 1 September 2021).
- Gurbuz, S.Z.; Griffiths, H.D.; Charlish, A.; Rangaswamy, M.; Greco, M.S.; Bell, K. An Overview of Cognitive Radar: Past, Present, And Future. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 6–18. [Google Scholar] [CrossRef]
- Butler, J. Tracking and Control in Multi-Function Radar. Ph.D. Thesis, University of London, London, UK, 1998. [Google Scholar]
- Zhai, Q.; Li, Y.; Zhang, Z.; Li, Y.; Wang, S. Few-Shot Recognition of Multi-Function Radar Modes via Refined Prototypical Random Walk Network. IEEE Trans. Aerosp. Electron. Syst. 2022, 59, 2376–2387. [Google Scholar] [CrossRef]
- Maini, A.M. Handbook of Defence Electronics and Optronics: Fundamentals, Technologies and Systems; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Ou, J.; Zhao, F.; Ai, X.; Yang, J.; Chen, Y. Data-Driven Method of Reverse Modelling for Multi-Function Radar. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017; pp. 1947–1951. [Google Scholar]
- Arasaratnam, I.; Haykin, S.; Kirubarajan, T.; Dilkes, F. Tracking the Mode of Operation of Multi-Function Radars. In Proceedings of the 2006 IEEE Conference on Radar, Verona, NY, USA, 24–27 April 2006; pp. 6–11. [Google Scholar]
- Chen, H.; Feng, K.; Kong, Y.; Zhang, L.; Yu, X.; Yi, W. Function Recognition of Multi-Function Radar Via CNN-GRU Neural Network. In Proceedings of the 2022 23th International Radar Symposium (IPS), Gdansk, Poland, 12–14 September 2022; pp. 71–76. [Google Scholar]
- Zhang, Z.; Li, Y.; Zhai, Q.; Li, Y.; Gao, M. Mode Recognition of Multifunction Radars for Few-Shot Learning Based on Compound Alignments. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 5860–5874. [Google Scholar] [CrossRef]
- Wang, A.; Krishnamurthy, V. Threat Estimation of Multifunction Radars: Modeling and Statistical Signal Processing of Stochastic Context Free Grammars. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP, Honolulu, HI, USA, 15–20 April 2007; pp. III-793–III-796. [Google Scholar]
- Kauppi, J.-P.; Martikainen, K.; Ruotsalainen, U. Hierarchical Classification of Dynamically Varying Radar Pulse Repetition Interval Modulation Patterns. Neural Netw. 2010, 23, 1226–1237. [Google Scholar] [CrossRef]
- Ou, J.; Chen, Y.; Zhao, F.; Ai, X.; Yang, J. Research on Extension of Hierarchical Structure for Multifunction Radar Signals. In Proceedings of the 2017 Progress In Electromagnetics Research Symposium—Spring (PIERS), St. Petersburg, Russia, 22–25 May 2017; pp. 2612–2616. [Google Scholar]
- Revillon, G.; Mohammad-Djafari, A.; Enderli, C. Radar Emitters Classification and Clustering with a Scale Mixture of Normal Distributions. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 1371–1376. [Google Scholar]
- Visnevski, N. Syntactic Modeling of Multi-Function Radars. Ph.D. Thesis, University of McMaster, Hamilton, ON, Canada, 2005. [Google Scholar]
- Visnevski, N.; Krishnamurthy, V.; Wang, A.; Haykin, S. Syntactic Modeling and Signal Processing of Multifunction Radars: A Stochastic Context-Free Grammar Approach. Proc. IEEE 2007, 95, 1000–1025. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, M.; Ma, Y.; Yang, J. Work Modes Recognition and Boundary Identification of MFR Pulse Sequences with a Hierarchical Seq2seq LSTM. IET Radar Sonar Navig. 2020, 14, 1343–1353. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar] [CrossRef]
- Wang, A.; Krishnamurthy, V. Signal Interpretation of Multi-Function Radars: Modeling and Statistical Signal Processing with Stochastic Context Free Grammar. IEEE Trans. Signal Process. 2008, 56, 1106–1119. [Google Scholar] [CrossRef]
- Wang, A.; Krishnamurthy, V. Modeling and Interpretation of Multifunction Radars with Stochastic Grammar. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; pp. 1–13. [Google Scholar]
- Ou, J.; Chen, Y.; Zhao, F.; Li, C.; Xiao, S. Novel Approach for the Recognition and Prediction of Multi-Function Radar Behaviours Based on Predictive State Representations. Sensors 2017, 17, 632. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.; Chen, Y.; Zhao, F.; Liu, J.; Xiao, S. Method for Operating Mode Identification of Multi-Function Radars Based on Predictive State Representations. IET Radar Sonar Navig. 2017, 11, 426–433. [Google Scholar] [CrossRef]
- Xiong, J.; Pan, J.; Zhuo, Y.; Guo, L. Airborne Multi-function Radar Air-to-air Working Pattern Recognition Based on Bayes Inference and SVM. In Proceedings of the 2022 5th International Conference on Information Communication and Signal Processing (ICICSP), Shenzhen, China, 26–28 November 2022; pp. 622–629. [Google Scholar]
- Wang, L.; Yang, X.Y.; Tan, H.Y.; Bai, X.; Zhou, F. Few-Shot Class-Incremental SAR Target Recognition Based on Hierarchical Embedding and Incremental Evolutionary Network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5204111. [Google Scholar] [CrossRef]
- Geng, J.; Wang, H.Y.; Fan, J.C.; Ma, X. SAR Image Classification via Deep Recurrent Encoding Neural Networks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2255–2269. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, P. Classification, Denoising and Deinterleaving of Pulse Streams with Recurrent Neural Networks. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 1624–1639. [Google Scholar] [CrossRef]
- Li, X.Q.; Liu, Z.M.; Huang, Z.T.; Liu, W. Radar Emitter Classification with Attention-based Multi-RNNs. IEEE Commun. Lett. 2020, 24, 2000–2004. [Google Scholar] [CrossRef]
- Xu, X.; Bi, D.; Pan, J. Method for Functional State Recognition of Multifunction Radars Based on Recurrent Neural Networks. IET Radar Sonar Navig. 2021, 15, 724–732. [Google Scholar] [CrossRef]
- Chen, H.; Feng, K.; Kong, Y.; Zhang, L.; Yu, X.; Yi, W. Multi-Function Radar Work Mode Recognition Based on Encoder-Decoder Model. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 1189–1192. [Google Scholar]
- Liu, Z.M. Recognition of Multifunction Radars via Hierarchically Mining and Exploiting Pulse Group Patterns. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4659–4672. [Google Scholar] [CrossRef]
- Feng, K.G.; Chen, H.Y.; Kong, Y.K.; Zhang, L.; Yu, X.; Yi, W. Prediction of Multi-Function Radar Signal Sequence Using Encoder-Decoder Structure. In Proceedings of the 2022 7th International Conference on Signal and Image Processing (ICSIP), Suzhou, China, 20–22 July 2022; pp. 152–156. [Google Scholar]
- Zhang, Z.; Li, Y.; Zhai, Q.; Li, Y.; Gao, M. Few-shot Learning for Fine-Grained Signal Modulation Recognition based on Foreground Segmentation. IEEE Trans. Veh. Technol. 2022, 71, 2281–2292. [Google Scholar] [CrossRef]
- Khandelwal, U.; He, H.; Qi, P.; Jurafsky, D. Sharp Nearby, Fuzzy Far Away: How Neural Language Models Use Context. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018), Melbourne, Australia, 15–20 July 2018; pp. 284–294. [Google Scholar]
- Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; Weinberger, K.Q. Deep Networks with Stochastic Depth. In Proceedings of the Computer Vision-ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; pp. 646–661. [Google Scholar]
- Kleinberg, R.; Li, Y.; Yuan, Y. An Alternative View: When Does SGD Escape Local Minima? In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2698–2707. [Google Scholar]
- Yamada, Y.; Iwamura, M.; Akiba, T.; Kise, K. Shakedrop Regularization for Deep Residual Learning. IEEE Access 2019, 7, 186126–186136. [Google Scholar] [CrossRef]
MFR Working Mode | RF (GHz) | B (MHz) | Amplitude (dB) | |||
---|---|---|---|---|---|---|
All-round Area Search (AAS) | 3G/fixed | 2000/fixed | 5M/fixed | 51/25/12.5/Group change | −60~−5 | |
Key Area Search (KAS) | 3G/fixed | 2000/fixed | 5M/fixed | 51/25/12.5/Group change | −55~0 | |
Tracking and Searching (TAS) | searching | 3G/fixed | 2000/fixed | 5M/fixed | 51/25/12.5/Group change | −60~−5 |
tracking | 3G/fixed | 500/333/200/142/group change | 10M/fixed | 20/fixed | −30~−10 | |
Multiple Target Tracking (MTT) | 3G/fixed | 500/333/200/142/group change | 10M/fixed | 20/fixed | −45~−10 | |
Single Target Tracking (STT) | 3G/fixed | 500/333/142 group change | 10M/fixed | 20/fixed | −30~−10 |
Network Structure | Parameter | Value | |
---|---|---|---|
Hyperparameters | Batch size | 4 | |
Epoch | 100 | ||
Learning rate | 0.001 | ||
Optimizer | Adam | ||
Pre-recognition module based on DP-ATCN | Regularized TCN | Number of residual blocks | 8 |
Convolution kernel size | 5 | ||
Number of convolution kernels | 64 | ||
Feature discarding probability | 0.01 | ||
CBAM | Pooling window | 2 | |
Pooling step | 2 | ||
Reduction rate | 2 | ||
Fully connected layer | Number of neurons in fully connected layer 1 | 64 | |
Number of neurons in fully connected layer 2 | 5 | ||
Secondary correction module | TCN | Number of residual blocks | 8 |
Convolution kernel size | 5 | ||
Number of convolution kernels | 64 | ||
Feature discarding probability | 0.01 | ||
Fully connected layer | Number of neurons | 5 |
No. | Double-Path | CBAM | ShakeDrop | SCM | Accuracy |
---|---|---|---|---|---|
1 | √ | √ | √ | √ | 97.84% |
2 | × | √ | √ | √ | 95.83% |
3 | √ | × | √ | √ | 96.69% |
4 | √ | √ | × | √ | 94.27% |
5 | √ | √ | √ | × | 92.15% |
6 | × | × | × | × | 89.69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, T.; Zhang, Q.; Zhang, Z.; Niu, F.; Guo, X.; Zhou, F. Shipborne Multi-Function Radar Working Mode Recognition Based on DP-ATCN. Remote Sens. 2023, 15, 3415. https://doi.org/10.3390/rs15133415
Tian T, Zhang Q, Zhang Z, Niu F, Guo X, Zhou F. Shipborne Multi-Function Radar Working Mode Recognition Based on DP-ATCN. Remote Sensing. 2023; 15(13):3415. https://doi.org/10.3390/rs15133415
Chicago/Turabian StyleTian, Tian, Qianrong Zhang, Zhizhong Zhang, Feng Niu, Xinyi Guo, and Feng Zhou. 2023. "Shipborne Multi-Function Radar Working Mode Recognition Based on DP-ATCN" Remote Sensing 15, no. 13: 3415. https://doi.org/10.3390/rs15133415
APA StyleTian, T., Zhang, Q., Zhang, Z., Niu, F., Guo, X., & Zhou, F. (2023). Shipborne Multi-Function Radar Working Mode Recognition Based on DP-ATCN. Remote Sensing, 15(13), 3415. https://doi.org/10.3390/rs15133415