Estimating the Evolution of a Post-Little Ice Age Deglaciated Alpine Valley through the DEM of Difference (DoD)
Abstract
:1. Introduction
Study Area
2. Data Source and Methods
DoD, DEMs Co-Registration, and Error Assessment
3. Results
3.1. Local Glacier Extent
3.2. Geomorphology of the Area
3.3. DEM of Difference
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vincent, C.; Le Meur, E.; Six, D.; Funk, M. Solving the paradox of the end of the Little Ice Age in the Alps. Geophys. Res. Lett. 2005, 32, L09706. [Google Scholar] [CrossRef]
- Serrano, E.; Oliva, M.; González-García, M.; López-Moreno, J.I.; González-Trueba, J.; Martín-Moreno, R.; Palma, P. Post-little ice age paraglacial processes and landforms in the high Iberian mountains: A review. Land Degrad. Dev. 2018, 29, 4186–4208. [Google Scholar] [CrossRef] [Green Version]
- Franzetti, A.; Pittino, F.; Gandolfi, I.; Azzoni, R.S.; Diolaiuti, G.; Smiraglia, C.; Pelfini, M.; Compostella, C.; Turchetti, B.; Buzzini, P.; et al. Early ecological succession patterns of bacterial, fungal and plant communities along a chronosequence in a recently deglaciated area of the Italian Alps. FEMS Microbiol. Ecol. 2020, 96, fiaa165. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Marta, S.; Guerrieri, A.; Gobbi, M.; Ambrosini, R.; Fontaneto, D.; Zerboni, A.; Poulenard, J.; Caccianiga, M.; Thuiller, W. Dynamics of ecological communities following current retreat of glaciers. Annu. Rev. Ecol. Evol. Syst. 2021, 52, 405–426. [Google Scholar] [CrossRef]
- D’Agata, C.; Diolaiuti, G.; Maragno, D.; Smiraglia, C.; Pelfini, M. Climate change effects on landscape and environment in glacierized Alpine areas: Retreating glaciers and enlarging forelands in the Bernina group (Italy) in the period 1954–2007. Geol. Ecol. Landsc. 2020, 4, 71–86. [Google Scholar] [CrossRef]
- Pelfini, M.; Bollati, I. Landforms and geomorphosites ongoing changes: Concepts and implications for geoheritage promotion. Quaest. Geogr. 2014, 33, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Guerrieri, A.; Carteron, A.; Bonin, A.; Marta, S.; Ambrosini, R.; Caccianiga, M.; Cantera, I.; Compostella, C.; Diolaiuti, G.; Fontaneto, D.; et al. Metabarcoding data reveal vertical multi-taxa variation in topsoil communities during the colonization of deglaciated forelands. Mol. Ecol. 2022; in press. [Google Scholar] [CrossRef]
- Bollati, I.M.; Viani, C.; Masseroli, A.; Mortara, G.; Testa, B.; Tronti, G.; Pelfini, M.; Reynard, E. Geodiversity of proglacial areas and implications for geosystem services: A review. Geomorphology 2023, 421, 108517. [Google Scholar] [CrossRef]
- Garavaglia, V.; Pelfini, M.; Bollati, I. The influence of climate change on glacier geomorphosites: The case of two Italian glaciers (Miage Glacier, Forni Glacier) investigated through dendrochronology. Geomorphologie 2010, 16, 153–164. [Google Scholar] [CrossRef]
- Heckmann, T.; Morche, D. Geomorphology of proglacial systems. In Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Ballantyne, C.K. Paraglacial geomorphology. Quat. Sci. Rev. 2002, 21, 1935–2017. [Google Scholar] [CrossRef]
- Ryder, J.M. Some aspects of the morphometry of paraglacial alluvial fans in south-central British Columbia. Can. J. Earth Sci. 1971, 8, 1252–1264. [Google Scholar] [CrossRef]
- Garavaglia, V.; Pelfini, M.; Motta, E. Glacier stream activity in the proglacial area of debris covered glacier in Aosta Valley, Italy: An application of dendroglaciology. Geogr. Fis. Din. Quat. 2010, 33, 15–24. [Google Scholar]
- Knight, J.; Harrison, S. Mountain glacial and paraglacial environments under global climate change: Lessons from the past, future directions and policy implications. Geogr. Ann. Ser. A 2014, 96, 245–264. [Google Scholar] [CrossRef]
- Burga, C.A.; Krüsi, B.; Egli, M.; Wernli, M.; Elsener, S.; Ziefle, M.; Fischer, T.; Mavris, C. Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): Straight forward or chaotic? Flora 2010, 205, 561–576. [Google Scholar] [CrossRef] [Green Version]
- Pelfini, M. Contributo alla conoscenza delle fluttuazioni oloceniche del Ghiacciaio dei Forni. Nat. Brescia. 1988, 24, 237–257. [Google Scholar]
- Jomelli, V.; Favier, V.; Rabatel, A.; Brunstein, D.; Hoffmann, G.; Francou, B. Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: A review. Palaeogeogr. Palaeoeocl. 2009, 281, 269–282. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Proc. Land 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Heckmann, T. Short-term geomorphological evolution of proglacial systems. Geomorphology 2017, 287, 3–28. [Google Scholar] [CrossRef] [Green Version]
- Williams, R. DEMs of difference. Geomorphol. Tech. 2002, 2, 1–17. [Google Scholar]
- Irvine-Fynn, T.D.L.; Barrand, N.E.; Porter, P.R.; Hodson, A.J.; Murray, T. Recent High-Arctic glacial sediment redistribution: A process perspective using airborne lidar. Geomorphology 2011, 125, 27–39. [Google Scholar] [CrossRef]
- Gawrysiak, L.; Kociuba, W. Application of geomorphons for analysing changes in the morphology of a proglacial valley (case study: The Scott River, SW Svalbard). Geomorphology 2020, 371, 107449. [Google Scholar] [CrossRef]
- Delaney, I.; Bauder, A.; Huss, M.; Weidmann, Y. Proglacial erosion rates and processes in a glacierized catchment in the Swiss Alps. Earth Surf. Process. Landf. 2018, 43, 765–778. [Google Scholar] [CrossRef] [Green Version]
- Carturan, L.; Baroni, C.; Carton, A.; Cazorzi, F.; Fontana, G.D.; Delpero, C.; Salvatore, M.C.; Seppi, R.; Zanoner, T. Reconstructing fluctuations of La Mare Glacier (Eastern Italian Alps) in the late Holocene: New evidence for a Little Ice Age maximum around 1600 AD. Geogr. Ann. Ser. A 2014, 96, 287–306. [Google Scholar] [CrossRef]
- Montrasio, A.; Berra, F.; Cariboni, M.; Ceriani, M.; Deichmann, N.; Ferliga, C.; Gregnanin, A.; Guerra, S.; Guglielmin, M.; Jadoul, F.; et al. Note Illustrative della Carta Geologica d’Italia: Foglio 024, Bormio; ISPRA, Servizio Geologico d’Italia: Roma, Italy, 2008. [Google Scholar]
- Smiraglia, C.; Azzoni, R.S.; D’Agata, C.; Maragno, D.; Fugazza, D.; Diolaiuti, G. The evolution of the Italian glaciers from the previous data base to the New Italian Inventory. Preliminary considerations and results. Geogr. Fis. Din. Quat. 2015, 38, 79–87. [Google Scholar]
- Galos, S.P.; Klug, C.; Maussion, F.; Covi, F.; Nicholson, L.; Rieg, L.; Gurgiser, W.; Molg, T.; Kaser, G. Reanalysis of a 10-year record (2004–2013) of seasonal mass balances at Langenferner/Vedretta Lunga, Ortler Alps, Italy. Cryosphere 2017, 11, 1417–1439. [Google Scholar] [CrossRef] [Green Version]
- Pelfini, M. Le Fluttuazioni Glaciali Oloceniche nel Gruppo Ortles-Cevedale (Settore Lombardo). Ph.D. Thesis, Università degli Studi di Milano, Milano, Italy, 1992; pp. 1–211. [Google Scholar]
- Pelfini, M.; Gobbi, M. Enhancement of the ecological value of Forni Glacier as a possible new eomorphosites: New data from arthropods communities. Geogr. Fis. Din. Quat. 2005, 28, 211–217. [Google Scholar]
- Longhi, A.; Guglielmin, M. The glacial history since the Last Glacial Maximum in the Forni Valley (Italian Central Alps). Reconstruction based on Schmidt’s Hammer R-values and crystallinity ratio indices of soils. Geomorphology 2021, 387, 107765. [Google Scholar] [CrossRef]
- Savi, S.; Dinale, R.; Comiti, F. The Sulden/Solda Glacier (Eastern Italian Alps): Fluctuations, dynamics, and topographic control over the last 200 years. Geogr. Fis. Din. Quat. 2021, 44, 15–30. [Google Scholar]
- Baroni, C.; Casale, S.; Salvatore, M.C.; Ivy-Ochs, S.; Christl, M.; Carturan, L.; Seppi, R.; Carton, A. Double response of glaciers in the Upper Peio Valley (Rhaetian Alps, Italy) to the Younger Dryas climatic deterioration. Boreas 2017, 46, 783–798. [Google Scholar] [CrossRef]
- Krampe, D.; Arndt, A.; Schneider, C. Energy and glacier mass balance of Fürkeleferner, Italy: Past, present, and future. Front. Earth Sci. 2022, 10, 814027. [Google Scholar] [CrossRef]
- Paul, F.; Rastner, P.; Azzoni, R.S.; Diolaiuti, G.; Fugazza, D.; Le Bris, R.; Nemec, J.; Rabatel, A.; Ramusovic, M.; Schwaizer, G.; et al. Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2. Earth Syst. Sci. Data 2020, 12, 1805–1821. [Google Scholar] [CrossRef]
- Desio, A. I Ghiacciai del Gruppo Ortles-Cevedale; Consiglio Nazionale delle Ricerche, Comitato Glaciologico Italiano: Milano, Italy, 1967. [Google Scholar]
- James, L.A.; Hodgson, M.E.; Ghoshal, S.; Latiolais, M.M. Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis. Geomorphology 2012, 137, 181–198. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Bolch, T.; Briggs, K.; Kääb, A.; McMillan, M.; McNabb, R.; Wuite, J. Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sens. Environ. 2017, 203, 256–275. [Google Scholar] [CrossRef] [Green Version]
- Brasington, J.; Langham, J.; Rumsby, B. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 2003, 53, 299–316. [Google Scholar] [CrossRef]
- Vogtle, T.; Schilling, K.-J. Digitizing maps. In GIS for Environmental Monitoring; Schweizerbart: Stuttgart, Germany, 1999; pp. 201–216. [Google Scholar]
- Smiraglia, C.; Azzoni, R.S.; D’Agata, C.; Maragno, D.; Fugazza, D.; Diolaiuti, G.A. The New Italian Glacier Inventory: A didactic tool for a better knowledge of the natural Alpine environment. J. Res. Didact. Geogr. 2015, 1, 81–94. [Google Scholar]
- Azzoni, R.S.; Fugazza, D.; Zerboni, A.; Senese, A.; D’Agata, C.; Maragno, D.; Carzaniga, A.; Cernuschi, M.; Diolaiuti, G.A. Evaluating high-resolution remote sensing data for reconstructing the recent evolution of supra glacial debris: A study in the Central Alps (Stelvio Park, Italy). Progress Phys. Geogr. Earth Environ. 2018, 42, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Zemp, M.; Paul, F.; Hoelzle, M.; Haeberli, W. Glacier fluctuations in the European Alps, 1850–2000. In Darkening Peaks Glacier Retreat; University of California Press: Berkeley, CA, USA, 2008. [Google Scholar]
- Campobasso, C.; Carton, A.; Chelli, A.; D’Orefice, M.; Dramis, F.; Graciotti, R. Aggiornamento ed Integrazioni delle Linee Guida della Carta Geomorfologica d’Italia Alla Scala 1: 50.000; Quaderni Serie III; ISPRA: Rome, Italy, 2018. [Google Scholar]
- Bollati, I.; Pellegrini, M.; Reynard, E.; Pelfini, M. Water driven processes and landforms evolution rates in mountain geomorphosites: Examples from Swiss Alps. Catena 2017, 158, 321–339. [Google Scholar] [CrossRef]
- Hirt, C. Artefact detection in global digital elevation models (DEMs): The maximum slope approach and its application for complete screening of the SRTM v4.1 and MERIT DEMs. Remote Sens. Environ. 2018, 207, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Everest, J.; Bradwell, T. Buried glacier ice in southern Iceland and its wider significance. Geomorphology 2003, 52, 347–358. [Google Scholar] [CrossRef]
- Cossart, E.R.; Braucher, M.; Fort, D.; Bourlès, L.; Carcaillet, J. Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): Evidence from field data and 10Be cosmic ray exposure ages. Geomorphology 2008, 95, 3–26. [Google Scholar] [CrossRef]
- Magnin, F.; Josnin, J.Y.; Ravanel, L.; Pergaud, J.; Pohl, B.; Deline, P. Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century. Cryosphere 2017, 11, 1813–1834. [Google Scholar] [CrossRef] [Green Version]
- Sharp, M. Annual moraine ridges at Skálafellsjökull, south-east Iceland. J. Glaciol. 1984, 30, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Tweed, F.S.; Carrivick, J.L. Deglaciation and proglacial lakes. Geol. Today 2015, 31, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Viani, C.; Machguth, H.; Huggel, C.; Godio, A.; Franco, D.; Perotti, L.; Giardino, M. Potential future lakes from continued glacier shrinkage in the Aosta Valley Region (Western Alps, Italy). Geomorphology 2020, 355, 107068. [Google Scholar] [CrossRef]
- Azzoni, R.S.; Bollati, I.; Pelfini, M.; Sarıkaya, M.A.; Zerboni, A. Geomorphology of a recently deglaciated high mountain area in Eastern Anatolia (Turkey). J. Maps 2022, 18, 258–267. [Google Scholar] [CrossRef]
- Goudie, A. The human impact in geomorphology–50 years of change. Geomorphology 2020, 366, 106601. [Google Scholar] [CrossRef]
Type | Source | Period and Spatial Resolution |
---|---|---|
Aerial orthophotos | Autonomous Province of Bolzano | 1997 (2 m), 2000 (1 m), 2003 (0.5 m) 2006 (0.5 m) 2008 (0.5 m), 2011 (0.5 m), 2014 (0.5 m), 2020 (0.2 m) |
Digital Elevation Model | Autonomous Province of Bolzano | 2005 (2.5 m), 2016 (0.5 m) |
Topographic map | Istituto Geografico Militare, Austrian sources | 1820, 1870–1871, 1872, 1963, 1976 |
Direct measurements | Desio, 1967 | 1865–1868, 1908–1912, 1925–1926, 1960–1961 |
Satellite images | Google Earth (Pleiades and Maxar) | 2017, 2021 |
Artistic view | Painting | 1855 |
Source | Sample Size | Δx | Δy | Δz | RMSE |
---|---|---|---|---|---|
DEM 2015—DEM 2006 | 293,830 | 2.71 | 3.33 | 1.58 | 4.01 |
Year | Glacier Area (km2) | Glacier Reduction from 1872 (%) | Proglacial Area Widening (km2) | Proglacial Area Widening Rate (km2/Year) |
---|---|---|---|---|
1872 | 14.33 | 0 | 0 | 0 |
1908 | 12.56 | −12% | +1.77 | 0.05 |
1959 | 11.87 | −17% | +2.46 | 0.01 |
1963 | 9.25 | −35% | +5.08 | 0.66 |
1976 | 8.91 | −38% | +5.42 | 0.03 |
1989 | 9.39 | −34% | +4.94 | −0.04 |
2008 | 6.94 | −52% | +7.39 | 0.13 |
2020 | 5.67 | −60% | +8.66 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azzoni, R.S.; Pelfini, M.; Zerboni, A. Estimating the Evolution of a Post-Little Ice Age Deglaciated Alpine Valley through the DEM of Difference (DoD). Remote Sens. 2023, 15, 3190. https://doi.org/10.3390/rs15123190
Azzoni RS, Pelfini M, Zerboni A. Estimating the Evolution of a Post-Little Ice Age Deglaciated Alpine Valley through the DEM of Difference (DoD). Remote Sensing. 2023; 15(12):3190. https://doi.org/10.3390/rs15123190
Chicago/Turabian StyleAzzoni, Roberto Sergio, Manuela Pelfini, and Andrea Zerboni. 2023. "Estimating the Evolution of a Post-Little Ice Age Deglaciated Alpine Valley through the DEM of Difference (DoD)" Remote Sensing 15, no. 12: 3190. https://doi.org/10.3390/rs15123190
APA StyleAzzoni, R. S., Pelfini, M., & Zerboni, A. (2023). Estimating the Evolution of a Post-Little Ice Age Deglaciated Alpine Valley through the DEM of Difference (DoD). Remote Sensing, 15(12), 3190. https://doi.org/10.3390/rs15123190