Spatio-Temporal Evolution and Coupled Coordination of LUCC and ESV in Cities of the Transition Zone, Shenmu City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methods
2.3.1. Degree of Land Use Dynamics
2.3.2. Land Use Intensity
2.3.3. Matrix for Transferring Land Use Types
2.3.4. ESV Estimation
2.3.5. Sensitivity Index Analysis
2.3.6. Spatial Autocorrelation Test
2.3.7. Analyzing the Coordination between LUCC and ESV
3. Results
3.1. LUCC Characteristics
3.1.1. Land Use Dynamic Degree
3.1.2. Land Use Conversion Pattern
- (1)
- During the period of 2000–2010 in Shenmu City, the transfer characteristics of various land categories were mainly characterized by the transfer of arable land and grassland to construction land, with an area of 1619.5 (23.61%) and 4198.8 hm2 (61.21%), respectively, and the area of construction land increased significantly. Throughout this duration, the construction land increased from 1796.1 hm2 (0.24%) in 2000 to 8459.6 hm2 (1.13%) in 2010. In general, the transfer of construction land was the most prominent, with a notable rise in the total area during this period. In addition, grassland and cropland also showed characteristics of migration. In contrast, the transfer of forest land, unused land, and water area was smaller.
- (2)
- From 2010 to 2020 inclusive, there was a more pronounced shift in land use in Shenmu City, with a doubling in the domain of construction land. Grassland, which had the highest area share, shifted by a total of 23,639.1 hm2, most of which was converted to arable land and construction land, with areas of 4440.5 and 14,906.3 hm2, respectively.
- (3)
- Throughout the period of investigation, it is evident that the gradual expansion of construction land in Shenmu City resulted in significant encroachment on ecological land, including grassland, arable land, and unused land, which resulted in slow degradation of the ecological environment. Additionally, the transfer process among arable land, forest land, and watershed also demonstrates Shenmu City’s response to the farmland-to-forest and grass project policy.
3.1.3. Analysis of Land Use Intensity Changes
3.2. Ecosystem Service Value Change Characteristics
3.2.1. Ecosystem Service Value Temporal Change Characteristics
3.2.2. Ecosystem Service Value Spatial Change Characteristics
3.2.3. ESV Change of ESF Indicators
3.3. Sensitivity Analysis
3.4. Spatial Autocorrelation between ESV and Land Use Intensity in Shenmu City
3.5. Coupling Coordination Analysis of ESV and LUCC
4. Discussion
4.1. Main Drivers of LUCC Changes
4.2. Main Drivers of ESV Changes
4.2.1. Drivers of Temporal Changes in ESV
4.2.2. Driving Factors of Spatial Change in ESV
4.2.3. Drivers of ESV Changes in ESF Indicators
4.3. Spatial and Temporal Evolution and Coupled Coordination Relationship between ESV and LUCC
4.4. Limitations of the Study and Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- He, N.; Zhou, Y.; Wang, L.; Li, Q.; Zuo, Q.; Liu, J. Spatiotemporal differentiation and the coupling analysis of ecosystem service value with land use change in Hubei Province, China. Ecol. Indic. 2022, 145, 109693. [Google Scholar] [CrossRef]
- Swartz, C.E. Ecosystems and human well-being: Synthesis. Phys. Teach. 1996, 34, 534. [Google Scholar] [CrossRef]
- de Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Crossman, N.D.; Burkhard, B.; Nedkov, S.; Willemen, L.; Petz, K.; Palomo, I.; Drakou, E.G.; Martin-Lopez, B.; McPhearson, T.; Boyanova, K.; et al. A blueprint for mapping and modelling ecosystem services. Ecosyst. Serv. 2013, 4, 4–14. [Google Scholar] [CrossRef]
- Wang, X.F.; Luo, P.P.; Zheng, Y.; Duan, W.L.; Wang, S.T.; Zhu, W.; Zhang, Y.Z.; Nover, D. Drought Disasters in China from 1991 to 2018: Analysis of Spatiotemporal Trends and Characteristics. Remote Sens. 2023, 15, 1708. [Google Scholar] [CrossRef]
- Fu, B.; Zhang, L. Land-use change and ecosystem services: Concepts, methods and progress. Prog. Geogr. 2014, 33, 441–446. [Google Scholar]
- Yang, H.; Zheng, L.; Wang, Y.; Li, J.F.; Zhang, B.W.; Bi, Y.Z. Quantifying the Relationship between Land Use Intensity and Ecosystem Services’ Value in the Hanjiang River Basin: A Case Study of the Hubei Section. Int. J. Environ. Res. Public Health 2022, 19, 10950. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.X.; Liu, S.L.; Dong, Y.H.; An, Y.; Shi, F.N.; Dong, S.K.; Liu, G.H. Spatio-temporal evolution scenarios and the coupling analysis of ecosystem services with land use change in China. Sci. Total Environ. 2019, 681, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Bargali, K.; Bargali, S. Germination capacity of seeds of leguminous plants under water deficit conditions: Implication for restoration of degraded lands in Kumaun Himalaya. Trop. Ecol. 2016, 57, 445–453. [Google Scholar]
- Davidar, P.; Sahoo, S.; Mammen, P.C.; Acharya, P.; Puyravaud, J.P.; Arjunan, M.; Garrigues, J.P.; Roessingh, K. Assessing the extent and causes of forest degradation in India: Where do we stand? Biol. Conserv. 2010, 143, 2937–2944. [Google Scholar] [CrossRef]
- Manral, V.; Bargali, K.; Bargali, S.S.; Shahi, C. Changes in soil biochemical properties following replacement of Banj oak forest with Chir pine in Central Himalaya, India. Ecol. Process. 2020, 9, 30. [Google Scholar] [CrossRef]
- Lei, H.; Koch, J.; Shi, H. An Analysis of Spatio-Temporal Urbanization Patterns in Northwest China. Land 2020, 9, 411. [Google Scholar] [CrossRef]
- Champ, P.A.; Boyle, K.J.; Brown, T.C.; Peterson, L.G. A Primer on Nonmarket Valuation; Springer: Berlin/Heidelberg, Germany, 2003; Volume 3. [Google Scholar]
- Xie, G.; Liu, C.-X.; Leng, Y.; Zheng, D.; Li, S.-C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Xiao, Y.; Chen, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar] [CrossRef]
- Bai, Y.; Ouyang, Z.; Zheng, H.; Xu, W.; Jiang, B.; Fang, Y. Evaluation of the forest ecosystem services in Haihe River Basin, China. Acta Ecol. Sin. 2011, 31, 2029–2039. [Google Scholar]
- Jinchang, L.I.; Wenli, W.; Guangyin, H.U.; Zhenhai, W.E.I. Impacts of land use and cover changes on ecosystem service value in Zoige Plateau. Acta Ecol. Sin. 2011, 31, 3451–3459. [Google Scholar]
- Tu, X.; Long, H. Spatial patterns and dynamic evolution of ecosystem service values in Poyang Lake Region from 2000 to 2010. Resour. Sci. 2015, 37, 2451–2460. [Google Scholar]
- Li, T.; Gan, D.; Yang, Z.; Wang, K.; Qi, Z.; Li, H.; Chen, X. Spatial-temporal evolvement of ecosystem service value of Dongting Lake area influenced by changes of land use. Chin. J. Appl. Ecol. 2016, 27, 3787–3796. [Google Scholar]
- Yao, X.; Zeng, J.; Li, W. Spatial correlation characteristics of urbanization and land ecosystem service value in Wuhan Urban Agglomeration. Trans. Chin. Soc. Agric. Eng. 2015, 31, 249–256. [Google Scholar]
- Chen, J.; Luo, H.; Hu, L.; Li, Q.; Jiang, W. Correlation Between Social Economic Development and Ecosystem Service Value-A Case of Chongqing Metropolitan Area. Res. Soil Water Conserv. 2017, 24, 330–336. [Google Scholar]
- Yang, W.P.; Zhang, Z.Y.; Luo, P.P.; Wang, Y.J. Temporal and spatial evolution and influencing factors of urban ecological total factor productivity in the Yellow River basin under strong sustainable development. Sci. Prog. 2023, 106, 00368504231152742. [Google Scholar] [CrossRef]
- Han, X.; Yu, J.; Zhao, X.; Wang, J. Spatiotemporal evolution of ecosystem service values in an area dominated by vegetation restoration: Quantification and mechanisms. Ecol. Indic. 2021, 131, 108191. [Google Scholar] [CrossRef]
- Xing, L.; Xue, M.G.; Wang, X.Y. Spatial correction of ecosystem service value and the evaluation of eco-efficiency: A case for China’s provincial level. Ecol. Indic. 2018, 95, 841–850. [Google Scholar] [CrossRef]
- Xing, L.; Hu, M.S.; Wang, Y. Integrating ecosystem services value and uncertainty into regional ecological risk assessment: A case study of Hubei Province, Central China. Sci. Total Environ. 2020, 740, 140126. [Google Scholar] [CrossRef] [PubMed]
- Lindenmayer, D.B.; Franklin, J.F. Managing Stand Structure as Part of Ecologically Sustainable Forest Management in Australian Mountain Ash Forests: Manejo de la Estructura como Parte del Manejo Ecológicamente Sustentable de los Bosques de Fresno de Montaña en Australia. Conserv. Biol. 1997, 11, 1053–1068. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Crespin, S.J.; Simonetti, J.A. Loss of ecosystem services and the decapitalization of nature in El Salvador. Ecosyst. Serv. 2016, 17, 5–13. [Google Scholar] [CrossRef]
- Kavhu, B.; Mashimbye, Z.E.; Luvuno, L. Climate-Based Regionalization and Inclusion of Spectral Indices for Enhancing Transboundary Land-Use/Cover Classification Using Deep Learning and Machine Learning. Remote Sens. 2021, 13, 5054. [Google Scholar] [CrossRef]
- Kavhu, B.; Mashimbye, Z.E.; Luvuno, L. Characterising social-ecological drivers of landuse/cover change in a complex transboundary basin using singular or ensemble machine learning. Remote Sens. Appl.-Soc. Environ. 2022, 27, 100773. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.W.; Yang, J.C.; Bu, K.; Wang, Q.; Tang, J.M.; Chang, L.P. The effects of population density changes on ecosystem services value: A case study in Western Jilin, China. Ecol. Indic. 2016, 61, 328–337. [Google Scholar] [CrossRef]
- Aziz, T. Changes in land use and ecosystem services values in Pakistan, 1950–2050. Environ. Dev. 2021, 37, 100576. [Google Scholar] [CrossRef]
- Wang, S.T.; Luo, P.P.; Xu, C.Y.; Zhu, W.; Cao, Z.; Ly, S. Reconstruction of Historical Land Use and Urban Flood Simulation in Xi’an, Shannxi, China. Remote Sens. 2022, 14, 6067. [Google Scholar] [CrossRef]
- Li, Q.; Li, W.J.; Wang, S.; Wang, J.F. Assessing heterogeneity of trade-offs/synergies and values among ecosystem services in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2022, 140, 109026. [Google Scholar] [CrossRef]
- Li, J.W.; Dong, S.C.; Li, Y.; Wang, Y.S.; Li, Z.H.; Li, F.J. Effects of land use change on ecosystem services in the China-Mongolia-Russia economic corridor. J. Clean. Prod. 2022, 360, 132175. [Google Scholar] [CrossRef]
- Li, B.W.; Yang, Z.F.; Cai, Y.P.; Xie, Y.L.; Guo, H.J.; Wang, Y.Y.; Zhang, P.; Li, B.; Jia, Q.P.; Huang, Y.P.; et al. Prediction and valuation of ecosystem service based on land use/land cover change: A case study of the Pearl River Delta. Ecol. Eng. 2022, 179, 106612. [Google Scholar] [CrossRef]
- Xie, L.; Wang, H.W.; Liu, S.H. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China. Ecol. Indic. 2022, 138, 108828. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Jing, Y.Q. Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [Google Scholar] [CrossRef]
- Liu, Y.B.; Hou, X.Y.; Li, X.W.; Song, B.Y.; Wang, C. Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecol. Indic. 2020, 56, 106004, Corrigendum in Ecol. Indic. 2020, 117, 106657. [Google Scholar] [CrossRef]
- Liu, X.; Sun, T.; Feng, Q. Dynamic spatial spillover effect of urbanization on environmental pollution in China considering the inertia characteristics of environmental pollution. Sustain. Cities Soc. 2020, 53, 101903. [Google Scholar] [CrossRef]
- Qian, Y.; Dong, Z.; Yan, Y.; Tang, L. Ecological risk assessment models for simulating impacts of land use and landscape pattern on ecosystem services. Sci. Total Environ. 2022, 833, 155218. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhao, D.; Deng, L. Landscape pattern simulation for ecosystem service value regulation of Three Gorges Reservoir Area, China. Environ. Impact Assess. Rev. 2022, 95, 106798. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X. Discussion on the Index Method of Regional Land Use Change. Acta Geogr. Sin. 2003, 58, 643–650. [Google Scholar]
- Han, Z.; Song, W.; Deng, X.Z. Responses of Ecosystem Service to Land Use Change in Qinghai Province. Energies 2016, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Wu, J. Thirty years of Landscape Ecology (1987–2017): Retrospects and prospects. Landsc. Ecol. 2017, 32, 2225–2239. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Bao, Y. Study on the methods of land use dynamic change research. Prog. Geogr. 1999, 18, 81–87. [Google Scholar]
- Tian, Y.; Xu, D.; Song, J.; Guo, J.; You, X.; Jiang, Y. Impacts of land use changes on ecosystem services at different elevations in an ecological function area, northern China. Ecol. Indic. 2022, 140, 109003. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Luo, G.; Li, Z.J.; Zhao, C.; Zhang, H.R.; Zhu, M.Z.; Xu, Q.; Wang, X.Q.; Zhao, C.M.; et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Xiao, R.; Lin, M.; Fei, X.F.; Li, Y.S.; Zhang, Z.H.; Meng, Q.X. Exploring the interactive coercing relationship between urbanization and ecosystem service value in the Shanghai-Hangzhou Bay Metropolitan Region. J. Clean. Prod. 2020, 253, 119803. [Google Scholar] [CrossRef]
- Anselin, L. A test for spatial autocorrelation in seemingly unrelated regressions. Econ. Lett. 1988, 28, 335–341. [Google Scholar] [CrossRef]
- Gao, X.; Shen, J.Q.; He, W.J.; Zhao, X.; Li, Z.C.; Hu, W.F.; Wang, J.Z.; Ren, Y.J.; Zhang, X. Spatial-temporal analysis of ecosystem services value and research on ecological compensation in Taihu Lake Basin of Jiangsu Province in China from 2005 to 2018. J. Clean. Prod. 2021, 317, 128241. [Google Scholar] [CrossRef]
- Qin, J.X.; Duan, W.L.; Chen, Y.N.; Dukhovny, V.A.; Sorokin, D.; Li, Y.P.; Wang, X.X. Comprehensive evaluation and sustainable development of water-energy-food-ecology systems in Central Asia. Renew. Sustain. Energy Rev. 2022, 157, 112061. [Google Scholar] [CrossRef]
- Hu, Y.A.; Duan, W.L.; Chen, Y.N.; Zou, S.; Kayumba, P.M.; Qin, J.X. Exploring the changes and driving forces of water footprint in Central Asia: A global trade assessment. J. Clean. Prod. 2022, 375, 134062. [Google Scholar] [CrossRef]
- Luo, P.P.; Zheng, Y.; Wang, Y.Y.; Zhang, S.P.; Yu, W.Q.; Zhu, X.; Huo, A.D.; Wang, Z.H.; He, B.; Nover, D. Comparative Assessment of Sponge City Constructing in Public Awareness, Xi’an, China. Sustainability 2022, 14, 11653. [Google Scholar] [CrossRef]
- Qiao, Q.; Zhen, Z.L.; Liu, L.M.; Luo, P.P. The Construction of Ecological Security Pattern under Rapid Urbanization in the Loess Plateau: A Case Study of Taiyuan City. Remote Sens. 2023, 15, 1523. [Google Scholar] [CrossRef]
- Shiferaw, H.; Bewket, W.; Alamirew, T.; Zeleke, G.; Teketay, D.; Bekele, K.; Schaffner, U.; Eckert, S. Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. Sci. Total Environ. 2019, 675, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Pan, Y.; Zhu, J.; Amable, G.S.; Xu, B. Integrated analysis of urbanization-triggered land use change trajectory and implications for ecological land management: A case study in Fuyang, China. Sci. Total Environ. 2019, 660, 209–217. [Google Scholar] [CrossRef]
- Luo, P.; Luo, M.; Li, F.; Qi, X.; Huo, A.; Wang, Z.; He, B.; Takara, K.; Nover, D. Urban flood numerical simulation: Research, methods and future perspectives. Environ. Model. Softw. 2022, 2022, 105478. [Google Scholar] [CrossRef]
- Duan, W.L.; Zou, S.; Christidis, N.; Schaller, N.; Chen, Y.N.; Sahu, N.; Li, Z.; Fang, G.H.; Zhou, B.T. Changes in temporal inequality of precipitation extremes over China due to anthropogenic forcings. NPJ Clim. Atmos. Sci. 2022, 5, 33. [Google Scholar] [CrossRef]
- Cao, Z.; Zhu, W.; Luo, P.P.; Wang, S.T.; Tang, Z.M.; Zhang, Y.Z.; Guo, B. Spatially Non-Stationary Relationships between Changing Environment and Water Yield Services in Watersheds of China’s Climate Transition Zones. Remote Sens. 2022, 14, 5078. [Google Scholar] [CrossRef]
- Deng, H.J.; Pepin, N.C.; Chen, Y.N.; Guo, B.; Zhang, S.H.; Zhang, Y.Q.; Chen, X.W.; Gao, L.; Meibing, L.; Ying, C. Dynamics of Diurnal Precipitation Differences and Their Spatial Variations in China. J. Appl. Meteorol. Climatol. 2022, 61, 1015–1027. [Google Scholar] [CrossRef]
- Lin, L.G.; Wei, X.D.; Luo, P.P.; Wang, S.N.; Kong, D.H.; Yang, J. Ecological Security Patterns at Different Spatial Scales on the Loess Plateau. Remote Sens. 2023, 15, 1011. [Google Scholar] [CrossRef]
- Zha, X.B.; Luo, P.P.; Zhu, W.; Wang, S.T.; Lyu, J.Q.; Zhou, M.M.; Huo, A.D.; Wang, Z.H. A bibliometric analysis of the research on Sponge City: Current situation and future development direction. Ecohydrology 2021, 14, e2328. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, P.P.; Zha, X.B.; Xu, C.Y.; Kang, S.X.; Zhou, M.M.; Nover, D.; Wang, Y.H. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. J. Clean. Prod. 2022, 379, 134043. [Google Scholar] [CrossRef]
- Wang, T.F.; Gong, Z.W. Evaluation and analysis of water conservation function of ecosystem in Shaanxi Province in China based on “Grain for Green” Projects. Environ. Sci. Pollut. Res. 2022, 29, 83878–83896. [Google Scholar] [CrossRef] [PubMed]
- Shifaw, E.; Sha, J.; Li, X.; Bao, Z.; Zhou, Z. An insight into land-cover changes and their impacts on ecosystem services before and after the implementation of a comprehensive experimental zone plan in Pingtan island, China. Land Use Policy 2019, 82, 631–642. [Google Scholar] [CrossRef]
- Maimaiti, B.; Chen, S.S.; Kasimu, A.; Mamat, A.; Aierken, N.; Chen, Q.L. Coupling and Coordination Relationships between Urban Expansion and Ecosystem Service Value in Kashgar City. Remote Sens. 2022, 14, 2557. [Google Scholar] [CrossRef]
- Liu, Y.; Song, W.; Deng, X. Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional DPSIR-based indicators. Ecol. Indic. 2019, 96, 23–37. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.N.; Liu, C.Z.; Xia, Y.F.; Da, B.W. Examining the coordination between urbanization and eco-environment using coupling and spatial analyses: A case study in China. Ecol. Indic. 2018, 93, 1163–1175. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.M.; Zhang, Q.; Li, J.F.; Zhou, X.W. Projections of future land use changes: Multiple scenarios -based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Bryan, B.A.; Ye, Y.; Connor, J.D. Land-use change impacts on ecosystem services value: Incorporating the scarcity effects of supply and demand dynamics. Ecosyst. Serv. 2018, 32, 144–157. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, J.; Cheng, M.; Xu, Q. A Study on Transfer of Ecosystem Service Values in Mining Cities by Meta-analysis. J. Nat. Resour. 2017, 32, 434–448. [Google Scholar]
Primary Classification | Secondary Classification | Main Location | Area Share | |
---|---|---|---|---|
Desert Beach area | Desert Area | Beach area | Western, Northwestern | 51.3% |
Loess Hilly area | Yellow earth and beam area | Shagai Huangtu Liang Mao District | Central, East, South, North | 37.6% |
Canyon hilly area | N/A | Northwest–Southeast line | 11.1% |
Second Category | Arable Land | Woodland | Grassland | Water | Unused Land |
---|---|---|---|---|---|
Food production | 0.85 | 0.25 | 0.23 | 0.66 | 0.01 |
Raw material production | 0.4 | 0.58 | 0.34 | 0.37 | 0.03 |
Water supply | 0.02 | 0.3 | 0.19 | 5.44 | 0.02 |
Gas regulation | 0.67 | 1.91 | 1.21 | 1.34 | 0.11 |
Climate regulation | 0.36 | 5.71 | 3.19 | 2.95 | 0.1 |
Environmental purification | 0.1 | 1.67 | 1.05 | 4.58 | 0.31 |
Hydrological regulation | 0.27 | 3.74 | 2.34 | 63.24 | 0.21 |
Soil conservation | 1.03 | 2.32 | 1.47 | 1.62 | 0.13 |
Maintaining nutrient circulation | 0.12 | 0.18 | 0.11 | 0.13 | 0.01 |
Biodiversity | 0.13 | 2.12 | 1.34 | 5.21 | 0.12 |
Aesthetic landscape | 0.06 | 0.93 | 0.59 | 3.31 | 0.05 |
Second Category | Arable Land | Woodland | Grassland | Water | Unused Land |
---|---|---|---|---|---|
Food production | 1072.73 | 318.66 | 294.47 | 826.63 | 12.62 |
Raw material production | 504.81 | 731.98 | 433.3 | 460.64 | 37.86 |
Water supply | 25.24 | 378.61 | 239.79 | 6865.46 | 25.24 |
Gas regulation | 845.56 | 2407.33 | 1522.85 | 1684.82 | 138.82 |
Climate regulation | 454.33 | 7203.06 | 4025.89 | 3716.69 | 126.2 |
Environmental purification | 126.2 | 2110.75 | 1329.34 | 5773.8 | 391.23 |
Hydrological regulation | 340.75 | 4713.7 | 2948.95 | 79,804.71 | 265.03 |
Soil conservation | 1299.89 | 2931.07 | 1855.19 | 2044.49 | 164.06 |
Maintaining nutrient circulation | 151.44 | 224.01 | 143.03 | 157.75 | 12.62 |
Biodiversity | 164.06 | 2669.2 | 1686.92 | 6575.2 | 151.44 |
Aesthetic landscape | 75.72 | 1170.54 | 744.6 | 4177.33 | 63.1 |
Year | Project | Arable Land | Woodland | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
2000–2005 | Change in area | −12,877.4 | 2159.9 | 7403.7 | −398.2 | 1036.3 | 2675.7 |
Dynamic degree | −1.2% | 1.8% | 0.4% | −0.4% | 11.5% | 0.7% | |
2005–2010 | Change in area | −9044.7 | 917.6 | 7957.9 | −1259.7 | 5627.3 | −4198.2 |
Dynamic degree | −0.9% | 0.7% | 0.4% | −1.4% | 39.7% | −1% | |
2010–2015 | Change in area | −696.2 | −244.4 | −4924.4 | −276.7 | 5952.4 | 189.3 |
Dynamic degree | −0.1% | −0.2% | −0.2% | −0.3% | 14.1% | 0.1% | |
2015–2020 | Change in area | −3167.8 | −486.2 | −10,186.9 | 1221.2 | 14,978.4 | −2358.7 |
Dynamic degree | −0.3% | −0.4% | −0.5% | 1.5% | 20.8% | −0.6% | |
2000–2020 | Change in area | −25,786.2 | 2346.8 | 250.3 | −713.3 | 27,594.4 | −3691.9 |
Dynamic degree | −0.6% | 0.5% | 0.01% | −0.2% | 76.8% | −0.2% |
Township | Land Use Intensity by Year | Change in Land Use Intensity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2020 | |
Binhe New Area | 230.87 | 229.69 | 232.51 | 241.49 | 244.81 | −1.18 | 2.82 | 8.98 | 3.32 | 13.95 |
Xisha Subdistrict | 199.82 | 199.07 | 206.24 | 212.65 | 216.09 | −0.76 | 7.17 | 6.41 | 3.44 | 16.27 |
Linzhou Subdistrict | 266.28 | 273.40 | 289.72 | 289.43 | 283.69 | 7.13 | 16.32 | −0.29 | −5.74 | 17.41 |
Yingbin Road Subdistrict | 234.11 | 231.33 | 231.19 | 231.39 | 231.87 | −2.78 | −0.13 | 0.20 | 0.47 | −2.24 |
Yongxing Subdistrict | 234.02 | 226.10 | 222.85 | 223.26 | 226.15 | −7.92 | −3.25 | 0.41 | 2.89 | −7.87 |
Xigou Subdistrict | 212.96 | 212.28 | 216.75 | 221.82 | 236.61 | −0.67 | 4.47 | 5.07 | 14.79 | 23.65 |
Gaojiabao Town | 225.55 | 222.19 | 223.08 | 225.06 | 226.65 | −3.37 | 0.90 | 1.98 | 1.59 | 1.10 |
Dianta Town | 233.40 | 228.62 | 228.77 | 228.76 | 231.11 | −4.78 | 0.15 | 0.00 | 2.35 | −2.29 |
Sunjiacha Town | 231.97 | 230.48 | 234.70 | 239.15 | 247.52 | −1.48 | 4.22 | 4.45 | 8.37 | 15.55 |
Daliuta Town | 207.74 | 206.90 | 210.58 | 213.71 | 223.83 | −0.84 | 3.68 | 3.12 | 10.12 | 16.09 |
Huashiya Town | 251.56 | 247.38 | 242.80 | 242.77 | 242.75 | −4.18 | −4.58 | −0.03 | −0.02 | −8.81 |
Zhongji Town | 247.00 | 244.09 | 242.68 | 242.88 | 245.89 | −2.90 | −1.41 | 0.20 | 3.01 | −1.11 |
Hejiachuan Town | 237.31 | 234.66 | 231.60 | 231.57 | 231.02 | −2.64 | −3.06 | −0.04 | −0.54 | −6.28 |
Erlin Rabbit Town | 194.33 | 194.57 | 196.32 | 197.31 | 197.39 | 0.25 | 1.75 | 0.99 | 0.08 | 3.07 |
Wanzhen Town | 243.76 | 241.96 | 234.63 | 234.57 | 234.20 | −1.80 | −7.33 | −0.06 | −0.37 | −9.56 |
Dabaodang Town | 186.78 | 187.55 | 189.72 | 189.19 | 211.17 | 0.78 | 2.17 | −0.53 | 21.98 | 24.39 |
Mazhen Town | 226.08 | 224.32 | 224.86 | 224.78 | 224.24 | −1.76 | 0.54 | −0.08 | −0.54 | −1.83 |
Langanbao Town | 230.98 | 226.34 | 224.30 | 224.25 | 224.03 | −4.64 | −2.04 | −0.05 | −0.22 | −6.95 |
Shamao Town | 231.56 | 230.32 | 230.17 | 230.14 | 229.87 | −1.23 | −0.16 | −0.03 | −0.27 | −1.69 |
Jinjie Town | 173.55 | 174.60 | 177.49 | 179.48 | 180.24 | 1.05 | 2.89 | 1.99 | 0.77 | 6.69 |
Shenmu | 217.65 | 215.84 | 216.70 | 218.18 | 222.08 | −1.80 | 0.86 | 1.47 | 3.90 | 4.43 |
Year | Project | Arable Land | Woodland | Grassland | Water | Construction Land | Unused Land | Total |
---|---|---|---|---|---|---|---|---|
2000 | ESV/108 CNY | 10.66 | 5.89 | 62.55 | 20.35 | 0.00 | 1.14 | 100.59 |
Percentage/% | 10.60% | 5.85% | 62.18% | 20.23% | 0.00% | 1.14% | 100.00% | |
2005 | ESV/108 CNY | 10.01 | 6.42 | 63.68 | 19.91 | 0.00 | 1.18 | 101.19 |
Percentage/% | 9.89% | 6.35% | 62.93% | 19.67% | 0.00% | 1.17% | 100.00% | |
2010 | ESV/108 CNY | 9.55 | 6.65 | 64.89 | 18.49 | 0.00 | 1.12 | 100.71 |
Percentage/% | 9.48% | 6.61% | 64.43% | 18.36% | 0.00% | 1.11% | 100.00% | |
2015 | ESV/108 CNY | 9.51 | 6.59 | 64.14 | 18.18 | 0.00 | 1.12 | 99.55 |
Percentage/% | 9.56% | 6.62% | 64.43% | 18.27% | 0.00% | 1.13% | 100.00% | |
2020 | ESV/108 CNY | 9.35 | 6.47 | 62.59 | 19.55 | 0.00 | 1.09 | 99.06 |
Percentage/% | 9.44% | 6.53% | 63.18% | 19.74% | 0.00% | 1.10% | 100.00% | |
2000–2005 | Value Change/108 CNY | −0.65 | 0.53 | 1.13 | −0.44 | 0.00 | 0.04 | 0.60 |
Growth rate/% | −6.10% | 8.99% | 1.80% | −2.16% | 0.00% | 3.51% | 0.60% | |
2005–2010 | Value Change/108 CNY | −0.46 | 0.23 | 1.21 | −1.42 | 0.00 | −0.06 | −0.49 |
Growth rate/% | −4.60% | 3.58% | 1.90% | −7.13% | 0.00% | −5.08% | −0.48% | |
2010–2015 | Value Change/108 CNY | −0.04 | −0.06 | −0.75 | −0.31 | 0.00 | 0.00 | −1.15 |
Growth rate/% | −0.42% | −0.90% | −1.16% | −1.68% | 0.00% | 0% | −1.15% | |
2015–2020 | Value Change/108 CNY | −0.16 | −0.12 | −1.55 | 1.37 | 0.00 | −0.03 | −0.50 |
Growth rate/% | −1.68% | −1.82% | −2.42% | 7.54% | 0.00% | −2.68% | −0.50% | |
2000–2020 | Value Change/108 CNY | −1.31 | 0.58 | 0.04 | −0.8 | 0.00 | −0.05 | −1.53 |
Growth rate/% | −12.29% | 9.85% | 0.06% | −3.93% | 0.00% | −4.39% | −1.52% |
Land Type | Value Factor | ESV (Million CNY) | CS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | 2000 | 2005 | 2010 | 2015 | 2020 | ||
Arable land | VC + 50% | 15.99 | 15.01 | 14.32 | 14.27 | 14.03 | 0.11 | 0.10 | 0.09 | 0.10 | 0.09 |
VC − 50% | 5.33 | 5.00 | 4.77 | 4.76 | 4.68 | ||||||
Wood land | VC + 50% | 8.83 | 9.64 | 9.98 | 9.89 | 9.71 | 0.06 | 0.06 | 0.07 | 0.07 | 0.07 |
VC − 50% | 2.94 | 3.21 | 3.33 | 3.30 | 3.24 | ||||||
Grass land | VC + 50% | 93.82 | 95.51 | 97.33 | 96.21 | 93.88 | 0.62 | 0.63 | 0.64 | 0.64 | 0.63 |
VC − 50% | 31.27 | 31.84 | 32.44 | 32.07 | 31.29 | ||||||
Water | VC + 50% | 30.53 | 29.86 | 27.74 | 27.28 | 29.33 | 0.20 | 0.20 | 0.18 | 0.18 | 0.20 |
VC − 50% | 10.18 | 9.95 | 9.25 | 9.09 | 9.78 | ||||||
Unused land | VC + 50% | 1.71 | 1.77 | 1.68 | 1.69 | 1.64 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
VC − 50% | 0.57 | 0.59 | 0.56 | 0.56 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Zhu, Q.; Bai, H.; Luo, P.; Liu, J. Spatio-Temporal Evolution and Coupled Coordination of LUCC and ESV in Cities of the Transition Zone, Shenmu City, China. Remote Sens. 2023, 15, 3136. https://doi.org/10.3390/rs15123136
Xie Y, Zhu Q, Bai H, Luo P, Liu J. Spatio-Temporal Evolution and Coupled Coordination of LUCC and ESV in Cities of the Transition Zone, Shenmu City, China. Remote Sensing. 2023; 15(12):3136. https://doi.org/10.3390/rs15123136
Chicago/Turabian StyleXie, Yuyang, Qiuchen Zhu, Hua Bai, Pingping Luo, and Jifa Liu. 2023. "Spatio-Temporal Evolution and Coupled Coordination of LUCC and ESV in Cities of the Transition Zone, Shenmu City, China" Remote Sensing 15, no. 12: 3136. https://doi.org/10.3390/rs15123136
APA StyleXie, Y., Zhu, Q., Bai, H., Luo, P., & Liu, J. (2023). Spatio-Temporal Evolution and Coupled Coordination of LUCC and ESV in Cities of the Transition Zone, Shenmu City, China. Remote Sensing, 15(12), 3136. https://doi.org/10.3390/rs15123136