Exploring Spatiotemporal Variations in Land Surface Temperature Based on Local Climate Zones in Shanghai from 2008 to 2020
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Remote Sensing Data
3. Methods
3.1. LCZ Classification
3.2. LST Retrieval for Landsat-5 TM and Landsat-8
3.3. Grid-Cell Processing
3.4. Moran′s I
4. Results
4.1. LCZ Mapping Results and Change Analysis
4.2. Relationships between Daytime LSTs and LCZs
4.3. Relationships between Nighttime LSTs and LCZs
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Middel, A.; Nazarian, N.; Demuzere, M.; Bechtel, B. Urban Climate Informatics: An Emerging Research Field. Front. Environ. Sci. 2022, 10, 867434. [Google Scholar] [CrossRef]
- Aslam, A.; Rana, I.A. The use of local climate zones in the urban environment: A systematic review of data sources, methods, and themes. Urban Clim. 2022, 42, 101120. [Google Scholar] [CrossRef]
- Huang, X.; Liu, A.; Li, J. Mapping and analyzing the local climate zones in China’s 32 major cities using Landsat imagery based on a novel convolutional neural network. Geo-Spat. Inf. Sci. 2021, 24, 528–557. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Martilli, A.; Mills, G.; Moede, C.; Stewart, I.D.; Vliet, J.V.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst. Sci. Data 2022, 14, 3835–3873. [Google Scholar] [CrossRef]
- Ren, J.; Yang, J.; Zhang, Y.; Xiao, X.; Xia, J.C.; Li, X.; Wang, S. Exploring thermal comfort of urban buildings based on local climate zones. J. Clean. Prod. 2022, 340, 130744. [Google Scholar] [CrossRef]
- Shi, Z.; Yang, J.; Zhang, Y.; Xiao, X.; Xia, J.C. Urban ventilation corridors and spatiotemporal divergence patterns of urban heat island intensity: A local climate zone perspective. Environ. Sci. Pollut. Res. 2022, 29, 74394–74406. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Rogan, J.; Kellndorfer, J. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 2012, 117, 72–82. [Google Scholar] [CrossRef]
- La, Y.; Bagan, H.; Yamagata, Y. Urban land cover mapping under the Local Climate Zone scheme using Sentinel-2 and PALSAR-2 data. Urban Clim. 2020, 33, 100661. [Google Scholar] [CrossRef]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI analysis using Local Climate Zones—A comparison of 50 cities. Urban Clim. 2019, 28, 100451. [Google Scholar] [CrossRef]
- Yan, C.; Guo, Q.; Li, H.; Li, L.; Qiu, G.Y. Quantifying the cooling effect of urban vegetation by mobile traverse method: A local-scale urban heat island study in a subtropical megacity. Build. Environ. 2020, 169, 106541. [Google Scholar] [CrossRef]
- Chen, C.; Bagan, H.; Xie, X.; La, Y.; Yamagata, Y. Combination of Sentinel-2 and PALSAR-2 for Local Climate Zone Classification: A Case Study of Nanchang, China. Remote Sens. 2021, 13, 1902. [Google Scholar] [CrossRef]
- Cilek, M.U.; Cilek, A. Analyses of land surface temperature (LST) variability among local climate zones (LCZs) comparing Landsat-8 and ENVI-met model data. Sustain. Cities Soc. 2021, 69, 102877. [Google Scholar] [CrossRef]
- Badaro-Saliba, N.; Adjizian-Gerard, J.; Zaarour, R.; Najjar, G. LCZ scheme for assessing Urban Heat Island intensity in a complex urban area (Beirut, Lebanon). Urban Clim. 2021, 37, 100846. [Google Scholar] [CrossRef]
- Huang, F.; Jiang, S.; Zhan, W.; Bechtel, B.; Liu, Z.; Demuzere, M.; Huang, Y.; Xu, Y.; Ma, L.; Xia, W.; et al. Mapping local climate zones for cities: A large review. Remote Sens. Environ. 2023, 292, 113573. [Google Scholar] [CrossRef]
- Kabano, P.; Lindley, S.; Harris, A. Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landsc. Urban Plan. 2021, 206, 103989. [Google Scholar] [CrossRef]
- Aslam, A.; Rana, I.A.; Bhatti, S.S. The spatiotemporal dynamics of urbanisation and local climate: A case study of Islamabad, Pakistan. Environ. Impact Assess. Rev. 2021, 91, 106666. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C.; Dallimer, M. The role of blue green infrastructure in the urban thermal environment across seasons and local climate zones in East Africa. Sustain. Cities Soc. 2022, 80, 103798. [Google Scholar] [CrossRef]
- Cui, L.; Shi, J. Urbanization and its environmental effects in Shanghai, China. Urban Clim. 2012, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Shen, D.; Dong, J.; Yin, J.; Zhao, J.; Xue, D. Monitoring of urban heat island in Shanghai, China, from 1981 to 2010 with satellite data. Arab. J. Geosci. 2014, 7, 3961–3971. [Google Scholar] [CrossRef]
- Yue, W.; Fan, P.; Wei, Y.D.; Qi, J. Economic development, urban expansion, and sustainable development in Shanghai. Stoch. Environ. Res. Risk Assess. 2014, 28, 783–799. [Google Scholar] [CrossRef]
- Miao, Y.; Che, H.; Zhang, X.; Liu, S. Relationship between summertime concurring PM2.5 and O3 pollution and boundary layer height differs between Beijing and Shanghai, China. Environ. Pollut. 2021, 268, 115775. [Google Scholar] [CrossRef]
- Walcott, S.M.; Pannell, C.W. Metropolitan spatial dynamics: Shanghai. Habitat Int. 2006, 30, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Frazier, M.W. The Power of Place Contentious Politics in Twentieth-Century Shanghai and Bombay, 1st ed.; Cambridge University Press: Cambridge, UK, 2019; pp. 1–26. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. Remote Sens. Environ. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Sobrino, J.; Jiménez-Muñoza, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2674–2677. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.H.; Li, W.J.; Xu, B.; Chen, Z.X.; Liu, J. The estimation of land surface emissivity for Landsat TM6. Remote Sens. Land Res. 2004, 16, 28–32, 36, 41. (In Chinese) [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Analysis of urban growth and estimating population density using satellite images of nighttime lights and land-use and population data. GIScience Remote Sens. 2015, 52, 765–780. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geog. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Xue, C.Q.L.; Zhai, H.; Mitchenere, B. Shaping Lujiazui: The formation and building of the CBD in Pudong, Shanghai. J. Urban Des. 2011, 16, 209–232. [Google Scholar] [CrossRef]
- Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and green space dynamics in Greater Dhaka, Bangladesh. Landsc. Ecol. Eng. 2012, 8, 45–58. [Google Scholar] [CrossRef]
- Du, H.; Cai, Y.; Zhou, F.; Jiang, H.; Jiang, W.; Xu, Y. Urban blue-green space planning based on thermal environment simulation: A case study of Shanghai, China. Ecol. Indic. 2019, 106, 105501. [Google Scholar] [CrossRef]
- Yang, J.; Ren, J.; Sun, D.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Understanding land surface temperature impact factors based on local climate zones. Sustain. Cities Soc. 2021, 69, 102818. [Google Scholar] [CrossRef]
- Ochola, E.M.; Fakharizadehshirazi, E.; Adimo, A.O.; Mukundi, J.B.; Wesonga, J.M.; Sodoudi, S. Inter-local climate zone differentiation of land surface temperatures for management of urban heat in Nairobi City, Kenya. Urban Clim. 2020, 31, 100540. [Google Scholar] [CrossRef]
- Choudhury, D.; Das, A.; Das, M. Investigating thermal behavior pattern (TBP) of local climatic zones (LCZs): A study on industrial cities of Asansol-Durgapur development area (ADDA), eastern India. Urban Clim. 2021, 35, 100727. [Google Scholar] [CrossRef]
- Chen, C.; Bagan, H.; Yoshida, T.; Borjigin, H.; Gao, J. Quantitative analysis of the building-level relationship between building form and land surface temperature using airborne LiDAR and thermal infrared data. Urban Clim. 2022, 45, 101248. [Google Scholar] [CrossRef]
- Chen, C.; Bagan, H.; Yoshida, T. Multiscale mapping of local climate zones in Tokyo using airborne LiDAR data, GIS vectors, and Sentinel-2 imagery. GIScience Remote Sens. 2023, 60, 2209970. [Google Scholar] [CrossRef]
- Khoshnoodmotlagh, S.; Daneshi, A.; Gharari, S.; Verrelst, J.; Mirzaei, M.; Omranie, H. Urban morphology detection and it’s linking with land surface temperature: A case study for Tehran Metropolis, Iran. Sustain. Cities Soc. 2021, 74, 103228. [Google Scholar] [CrossRef]
- Aram, F.A.; García, E.H.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Satellite Data | Date | Band | Spatial Resolution (m) |
---|---|---|---|
Landsat-5 TM C1 Level-2 | 25 April 2008 | Band 1–5, 7 | 30 |
ALOS PALSAR RTC | 28 April 2008 | HH, HV | 20 |
15 May 2008 | |||
1 June 2008 | |||
Sentinel-2 MSI L2A | 28 April 2020 | Band 1–8, 8a, 9, 11, 12 | 10, 20, 60 |
ALOS-2 PALSAR-2 L3.1 | 2 May 2020 30 May 2020 | HH, HV | 10 |
Scheme 8. | Date | Band | Spatial Resolution (m) | Time (GMT+8) |
---|---|---|---|---|
Landsat-5 TM C2 Level-1 | 25 April 2008 | Band 3, 4, 6 | 30 | 10:14 |
28 July 2007 | 10:18 | |||
19 November 2008 | 10:08 | |||
2 February 2007 | 10:20 | |||
Landsat-8 OLI/TIRS C2 Level-1 | 12 May 2020 | Band 4, 5, 10 | 30 | 10:24 |
16 August 2020 | 10:24 | |||
22 December 2020 | 10:25 | |||
22 February 2020 | 10:24 | |||
ASTER Level-2 AST_08 | 2 August 2019 | — | 90 | 22:07 |
Class | Description | 2008 | 2020 | ||
---|---|---|---|---|---|
Training | Test | Training | Test | ||
LCZ 1 | Compact high-rise | 1264 | 241 | 4261 | 741 |
LCZ 2 | Compact mid-rise | 15,656 | 4873 | 3640 | 932 |
LCZ 3 | Compact low-rise | 53,494 | 14,445 | 11,180 | 4092 |
LCZ 4 | Open high-rise | 69,933 | 10,287 | 40,791 | 12,035 |
LCZ 5 | Open mid-rise | 211,189 | 70,466 | 59,962 | 19,785 |
LCZ 6 | Open low-rise | 114,805 | 25,423 | 22,547 | 7332 |
LCZ 8&10 | Large low-rise and heavy industry | 105,346 | 33,776 | 21,620 | 7700 |
LCZ A | Dense trees | 3050 | 254 | 1463 | 1132 |
LCZ B&C | Scattered trees with bush and scrub | 73,182 | 21,031 | 26,407 | 6134 |
LCZ D | Low plants | 135,671 | 43,186 | 23,148 | 5051 |
LCZ E | Bare rock or paved | 67,727 | 24,252 | 37,434 | 10,821 |
LCZ F | Bare soil or sand | 41,915 | 9893 | 35,953 | 3978 |
LCZ G | Water | 27,203 | 6088 | 23,349 | 4384 |
Total | 920,435 | 264,215 | 311,755 | 84,117 |
Date | Moran’s I | z Score | p Value |
---|---|---|---|
25 April 2008 | 0.895 | 2096.458 | 0.000 |
28 July 2007 | 0.888 | 2079.299 | 0.000 |
19 November 2008 | 0.784 | 1834.793 | 0.000 |
02 February 2007 | 0.804 | 1883.002 | 0.000 |
12 May 2020 | 0.887 | 2077.285 | 0.000 |
16 August 2020 | 0.897 | 2101.054 | 0.000 |
22 December 2020 | 0.818 | 1915.356 | 0.000 |
22 February 2020 | 0.820 | 1920.172 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Xie, X.; Bagan, H.; Chen, C.; Wang, Q.; Yoshida, T. Exploring Spatiotemporal Variations in Land Surface Temperature Based on Local Climate Zones in Shanghai from 2008 to 2020. Remote Sens. 2023, 15, 3106. https://doi.org/10.3390/rs15123106
Hou X, Xie X, Bagan H, Chen C, Wang Q, Yoshida T. Exploring Spatiotemporal Variations in Land Surface Temperature Based on Local Climate Zones in Shanghai from 2008 to 2020. Remote Sensing. 2023; 15(12):3106. https://doi.org/10.3390/rs15123106
Chicago/Turabian StyleHou, Xinyan, Xuan Xie, Hasi Bagan, Chaomin Chen, Qinxue Wang, and Takahiro Yoshida. 2023. "Exploring Spatiotemporal Variations in Land Surface Temperature Based on Local Climate Zones in Shanghai from 2008 to 2020" Remote Sensing 15, no. 12: 3106. https://doi.org/10.3390/rs15123106
APA StyleHou, X., Xie, X., Bagan, H., Chen, C., Wang, Q., & Yoshida, T. (2023). Exploring Spatiotemporal Variations in Land Surface Temperature Based on Local Climate Zones in Shanghai from 2008 to 2020. Remote Sensing, 15(12), 3106. https://doi.org/10.3390/rs15123106