Rooftop Photovoltaic Energy Production Estimations in India Using Remotely Sensed Data and Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Site
2.1.2. Silicon Sensor for Ground-Based Data Measurement
2.1.3. Cloud Data
2.1.4. Aerosol Data
2.2. Methodology
2.2.1. Radiative Transfer Model Simulation
2.2.2. Solar Energy Simulation and Financial Aspects
3. Results
3.1. Impact of Clouds and Aerosols on All Sky GHI
3.2. Comparison of AMF and CMF
3.3. Real Time and Simulated PV Comparisons
3.4. Economic Impact Due to Aerosols and Clouds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Charles Rajesh Kumar, J.; Majid, M.A. Renewable energy for sustainable development in India: Current status, future prospects, challenges, employment, and investment opportunities. Energy Sustain. Soc. 2020, 10, 1–36. [Google Scholar] [CrossRef]
- Kumar, S.; Madlener, R. CO2 emission reduction potential assessment using renewable energy in India. Energy 2016, 97, 273–282. [Google Scholar] [CrossRef]
- Zabeltitz, C.H.R.V.O.N. Effective Use of Renewable Energies for Greenhouse Heating. Renew. Energy 1994, 5, 479–485. [Google Scholar] [CrossRef]
- Vourdoubas, J. Overview of Heating Greenhouses with Renewable Energy Sources a Case Study in Crete- Greece. J. Agric. Environ. Sci. 2015, 4, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Dumka, U.C.; Kosmopoulos, P.G.; Patel, P.N. Can Forest Fires Be an Important Factor in the Reduction in Solar Power Production in India? Remote Sens. 2022, 14, 549. [Google Scholar] [CrossRef]
- Charles Rajesh Kumar, J.; Vinod Kumar, D.; Majid, M.A. Wind energy programme in India: Emerging energy alternatives for sustainable growth. Energy Environ. 2019, 30, 1135–1189. [Google Scholar] [CrossRef]
- Dimock, M.E. National Electricity Planning. Br. Public Util. Natl. Dev. 2019, I, 195–227. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; De Castro, C.; González, L.J.M. Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev. 2019, 26, 100399. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Energy Prospects for India; International Renewable Energy Agency: Rome, Italy, 2015; ISBN 9789292600266.
- Sharma, N.K.; Tiwari, P.K.; Sood, Y.R. Solar energy in India: Strategies, policies, perspectives and future potential. Renew. Sustain. Energy Rev. 2012, 16, 933–941. [Google Scholar] [CrossRef]
- Energy Statistics of India 2023. Available online: https://www.mospi.gov.in/sites/default/files/publication_reports/Energy_Statistics_2023/Chapter%206-Consumption%20of%20Energy%20Resources.pdf (accessed on 28 May 2023).
- Masoom, A.; Kosmopoulos, P.; Bansal, A.; Kazadzis, S. Solar energy estimations in india using remote sensing technologies and validation with sun photometers in urban areas. Remote Sens. 2020, 12, 254. [Google Scholar] [CrossRef] [Green Version]
- Masoom, A.; Kosmopoulos, P.; Bansal, A.; Gkikas, A. Forecasting dust impact on solar energy using remote sensing and modeling techniques. Sol. Energy 2021, 228, 317–332. [Google Scholar] [CrossRef]
- Dumka, U.C.; Kosmopoulos, P.G.; Ningombam, S.S.; Masoom, A. Impact of aerosol and cloud on the solar energy potential over the central gangetic himalayan region. Remote Sens. 2021, 13, 3248. [Google Scholar] [CrossRef]
- Solar/Green Cities|Ministry of New and Renewable Energy|Government of India. Available online: https://mnre.gov.in/solar-cities (accessed on 26 May 2023).
- Rahiman, R.; Yenneti, K.; Panda, A. Making Indian Cities Energy Smart; The Energy and Resources Institute: New Delhi, India, 2019; Available online: http://teriin.org/sites/default/files/2019-04/Making-Indian-Cities-Energy-Smart_UNSW-TERI.pdf (accessed on 26 May 2023).
- Ramanathan, V.; Chung, C.; Kim, D.; Bettge, T.; Buja, L.; Kiehl, J.T.; Washington, W.M.; Fu, Q.; Sikka, D.R.; Wild, M. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA 2005, 102, 5326–5333. [Google Scholar] [CrossRef] [Green Version]
- Dirnberger, D.; Blackburn, G.; Müller, B.; Reise, C. On the impact of solar spectral irradiance on the yield of different PV technologies. Sol. Energy Mater. Sol. Cells 2015, 132, 431–442. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, Y.; Qin, B.; Shi, K. Long-term changes in surface solar radiation and their effects on air temperature in the Shanghai region. Int. J. Climatol. 2015, 35, 3385–3396. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; Taylor, M.; Athanasopoulou, E.; Speyer, O.; Raptis, P.I.; Marinou, E.; Proestakis, E.; Solomos, S.; Gerasopoulos, E.; et al. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements. Atmos. Meas. Tech. 2017, 10, 2435–2453. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yi, B.; Wang, S.; Liu, Y.; Li, Y. Diverse cloud and aerosol impacts on solar photovoltaic potential in southern China and northern India. Sci. Rep. 2022, 12, 19671. [Google Scholar] [CrossRef]
- Roebeling, R.A.; Feijt, A.J.; Stammes, P. Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res. Atmos. 2006, 111, D20. [Google Scholar] [CrossRef]
- Derrien, M.; Gléau, H.; Fernandez, P. Algorithm Theoretical Basis Document for “Cloud Products” (CMa-PGE01 v3.2, CT-PGE02 v2.2 & CTTH-PGE03 v2.2); NWC SAF: Madrid, Spain, 2013. [Google Scholar]
- Data|Copernicus. Available online: https://atmosphere.copernicus.eu/data (accessed on 4 April 2023).
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef] [Green Version]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef] [Green Version]
- Mayer, B.; Kylling, A.; Emde, C.; Buras, R.; Hamann, U.; Gasteiger, J.; Richter, B. libRadtran User’s Guide; Meteorological Institute Munich: Munich, Germany, 2017. [Google Scholar]
- Ménard, L.; Nüst, D.; Ngo, K.M.; Blanc, P.; Jirka, S.; Masó, J.; Ranchin, T.; Wald, L. Interoperable Exchange of Surface Solar Irradiance Observations: A Challenge. In Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 76, pp. 113–120. [Google Scholar]
- Lefèvre, M.; Blanc, P.; Espinar, B.; Gschwind, B.; Ménard, L.; Ranchin, T.; Wald, L.; Saboret, L.; Thomas, C.; Wey, E. The HelioClim-1 database of daily solar radiation at Earth surface: An example of the benefits of GEOSS Data-CORE. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 1745–1753. [Google Scholar] [CrossRef]
- Taylor, M.; Kosmopoulos, P.G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C.T. Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters. J. Quant. Spectrosc. Radiat. Transf. 2016, 168, 176–192. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; Taylor, M.; Raptis, P.I.; Keramitsoglou, I.; Kiranoudis, C.; Bais, A.F. Assessment of surface solar irradiance derived from real-time modelling techniques and verification with ground-based measurements. Atmos. Meas. Tech. 2018, 11, 907–924. [Google Scholar] [CrossRef] [Green Version]
- Stamnes, K.; Tsay, S.-C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N. On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci. 1992, 49, 2139–2156. [Google Scholar] [CrossRef]
- Zhong, W.; Li, F.; Zhang, Z.; Song, L.; Li, Z. Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A 2001, 301, 125–130. [Google Scholar] [CrossRef]
- Shettle, E.P. Models of Aerosols, Clouds and Precipitation for Atmospheric Propagation Studies. In Proceedings of the Conference on Atmospheric Propagation in the UV, Visible, IR and MM-Region and Related System Aspects, NATO Adv, Copenhagen, Denmark, 9–13 October 1989; Group for Aerosp; Res. and Dev.: Copenhagen, Denmark, 1989. [Google Scholar]
- Kinne, S. The MACv2 aerosol climatology. Tellus B Chem. Phys. Meteorol. 2019, 71, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Eskes, H.J.; Velthoven, P.V.; Valks, P.J.M.; Kelder, H.M. Assimilation of GOME total-ozone satellite observations in a three-dimensional tracer-transport model. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2003, 129, 1663–1681. [Google Scholar] [CrossRef]
- McClatchey, R.A.; Air Force Cambridge Research Laboratories; Office of Aerospace Research; United States Air Force. Optical Properties of the Atmosphere; Air Force Cambridge Research Laboratories: Cambridge, MA, USA, 1971. [Google Scholar]
- Kneizys, F.X.; Shettle, E.P.; Gallery, W.O.; Chetwynd, J.H., Jr.; Abreu, L.W. Air Force Geophysics Lab Hanscom AFB Ma. In Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 6. Supplement: Program Listings; Air Force Geophysics Lab Hanscom: Tampa, FL, USA, 1983. [Google Scholar]
- Fountoulakis, I.; Papachristopoulou, K.; Proestakis, E.; Amiridis, V.; Kontoes, C.; Kazadzis, S. Effect of Aerosol Vertical Distribution on the Modeling of Solar Radiation. Remote Sens. 2022, 14, 1143. [Google Scholar] [CrossRef]
- Photovoltaic Geographical Information System. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/ (accessed on 26 May 2023).
- Global Solar Atlas. Available online: https://globalsolaratlas.info/map (accessed on 25 October 2022).
- Global Monitoring Laboratory—Earth System Laboratory. Available online: https://gml.noaa.gov/ (accessed on 12 October 2022).
- Mercom India. Available online: https://mercomindia.com/rajasthan-levelized-tariff-solar-kusum-program/ (accessed on 29 December 2022).
- Dumka, U.C.; Kaskaoutis, D.G.; Francis, D.; Chaboureau, J.P.; Rashki, A.; Tiwari, S.; Singh, S.; Liakakou, E.; Mihalopoulos, N. The Role of the Intertropical Discontinuity Region and the Heat Low in Dust Emission and Transport over the Thar Desert, India: A Premonsoon Case Study. J. Geophys. Res. Atmos. 2019, 124, 13197–13219. [Google Scholar] [CrossRef]
- Ben-tayeb, A.; Diouri, M.; Meziane, R.; Steli, H. Solar radiation attenuation by aerosol: Application to solar farms. Air Qual. Atmos. Health 2020, 13, 259–269. [Google Scholar] [CrossRef]
- Iqbal, M. An Introduction to Solar Radiation; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Djafer, D.; Irbah, A.; Zaiani, M. Identification of clear days from solar irradiance observations using a new method based on the wavelet transform. Renew. Energy 2017, 101, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Lefevre, M.; Oumbe, A.; Blanc, P.; Espinar, B.; Gschwind, B.; Qu, Z.; Wald, L.; Schroedter-Homscheidt, M.; Hoyer-Klick, C.; Arola, A.; et al. McClear: A new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos. Meas. Tech. 2013, 6, 2403–2418. [Google Scholar] [CrossRef] [Green Version]
- Kosmopoulos, P.G.; Kazadzis, S.; El-Askary, H.; Taylor, M.; Gkikas, A.; Proestakis, E.; Kontoes, C.; El-Khayat, M.M. Earth-observation-based estimation and forecasting of particulate matter impact on solar energy in Egypt. Remote Sens. 2018, 10, 1870. [Google Scholar] [CrossRef] [Green Version]
- Haney, J.; Burstein, A. PV System Operations and Maintenance Fundamentals Solar; SolarABCs: Belleair Bluffs, FL, USA, 2013. [Google Scholar]
- Ramachandran, S.; Kedia, S. Aerosol-precipitation interactions over India: Review and future perspectives. Adv. Meteorol. 2013, 2013, 649156. [Google Scholar] [CrossRef] [Green Version]
- Polo, J.; Zarzalejo, L.F.; Cony, M.; Navarro, A.A.; Marchante, R.; Martín, L.; Romero, M. Solar radiation estimations over India using Meteosat satellite images. Sol. Energy 2011, 85, 2395–2406. [Google Scholar] [CrossRef]
Station | Lat (°N) | Long (°E) | DC Nominal Power (kWp) | AC Nominal Power (kW) | Module Area (m2) | Altitude (m.a.s.l) | Tilt (°) |
---|---|---|---|---|---|---|---|
Thanagazi | 27.313 | 76.313 | 1504 | 1175 | 8237 | 447 | 7 |
Ceramics | 28.05 | 76.83 | 1354 | 1080 | 7496 | 280 | 6 |
Chopanki | 28.195 | 76.864 | 1008 | 775 | 5467 | 290 | 10 |
Bhiwadi | 28.195 | 76.864 | 1004 | 800 | 5608 | 260 | 6 |
Stations | Ep (kWh m−2) | Revenue (K INR) | ELaerosol (kWh m−2) | ELcloud (kWh m−2) | FLaerosol (K INR) | FLcloud (K INR) |
---|---|---|---|---|---|---|
Thanagazi | 1699 | 6107 | 230 | 458 | 828 | 1647 |
Ceramics | 1560 | 5154 | 217 | 373 | 662 | 1231 |
Chopanki | 1568 | 3178 | 232 | 358 | 550 | 914 |
Bhiwadi | 1491 | 3649 | 224 | 373 | 548 | 913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Kosmopoulos, P.; Kashyap, Y.; Gautam, R. Rooftop Photovoltaic Energy Production Estimations in India Using Remotely Sensed Data and Methods. Remote Sens. 2023, 15, 3051. https://doi.org/10.3390/rs15123051
Kumar A, Kosmopoulos P, Kashyap Y, Gautam R. Rooftop Photovoltaic Energy Production Estimations in India Using Remotely Sensed Data and Methods. Remote Sensing. 2023; 15(12):3051. https://doi.org/10.3390/rs15123051
Chicago/Turabian StyleKumar, Anil, Panagiotis Kosmopoulos, Yashwant Kashyap, and Rupam Gautam. 2023. "Rooftop Photovoltaic Energy Production Estimations in India Using Remotely Sensed Data and Methods" Remote Sensing 15, no. 12: 3051. https://doi.org/10.3390/rs15123051
APA StyleKumar, A., Kosmopoulos, P., Kashyap, Y., & Gautam, R. (2023). Rooftop Photovoltaic Energy Production Estimations in India Using Remotely Sensed Data and Methods. Remote Sensing, 15(12), 3051. https://doi.org/10.3390/rs15123051