Three-Dimensional Modelling of Past and Present Shahjahanabad through Multi-Temporal Remotely Sensed Data
Abstract
:1. Introduction
1.1. Importance of 3D Modelling in Heritage Conservation
1.2. Visibility: An Important Factor for Heritage Conservation and Cultural Identity
1.3. Past Attempts of Generating Models from Declassified Satellite Images
2. Materials and Methods
2.1. Study Area
Jama Masjid, a Culturally Rich Heritage
2.2. Methodology
- Data sources that could potentially produce the same level-of-detail models for both the present and the past.
- Data sources that could follow the same (more or less) methodological framework.
- The use of remote sensing data sources and methodologies, including the use of deep learning.
City Model Generation: 2020s and 1970s
2.3. Datasets
2.4. Present City Modelling of the 2020s
2.4.1. Extraction of DTMs through ResDepth
2.4.2. Extraction of nDSMs
2.4.3. Integration and Visualization
2.5. Past City Modelling of the 1970s
2.5.1. KH-9 Declassified Images
2.5.2. Distortions and Missing Metadata
2.5.3. Extraction of Image Parameters
2.5.4. Extraction of Digital Surface Model
2.6. Ground-Level Visibility Analysis
3. Results
3.1. Digital Surface Model Accuracies
3.1.1. DSM of 2020s
3.1.2. DSM of 1970s
3.2. Visualizing the Cities
3.2.1. Present City Model of the 2020s
3.2.2. Past City Model of the 1970s
3.3. Inference from the Two Models
3.4. Ground-Level Visibility Analysis
4. Discussion
4.1. Model Accuracies
4.2. Use of Alternate Data Sources and Techniques
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Xiao, W.; Mills, J.; Guidi, G.; Rodríguez-Gonzálvez, P.; Gonizzi Barsanti, S.; González-Aguilera, D. Geoinformatics for the conservation and promotion of cultural heritage in support of the UN Sustainable Development Goals. ISPRS J. Photogramm. Remote Sens. 2018, 142, 389–406. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Francucci, M.; De Collibus, M.F.; Ciaffi, M.; Fantoni, R.; Carmagnola, R.; Adinolfi, G.; Guarneri, M. Comparative study of historical and scientific documentation of the paintings in the Querciola Tomb in Tarquinia. J. Cult. Herit. 2023, 61, 229–237. [Google Scholar] [CrossRef]
- Chagnaud, C.; Samuel, J.; Servigne, S.; Gesquière, G. Visualization of documented 3D cities. In Proceedings of the Eurographics Workshop on Urban Data Modelling and Visualisation, UDMV, Liège, Belgique, 12 December 2016; pp. 87–93. [Google Scholar]
- World Heritage Committee. Convention Concerning the Protection of the World Cultural and Natural Heritage World. In World Heritage Convention and Sustainable Development. 27 May 2016, p. 8. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000245833 (accessed on 7 November 2021).
- Droj, G. Cultural Heritage Conservation by GIS. In Proceedings of the GISOpen, Székesfehérvár, Hungary, 17–19 March 2010; pp. 1–6. Available online: http://www.geo.info.hu/gisopen/gisopen2010/eloadasok/pdf/droj.pdf (accessed on 6 November 2021).
- Fiorillo, F.; Remondino, F.; Barba, S.; Santoriello, A.; De Vita, C.B.; Casellato, A. 3D Digitization and Mapping of Heritage Monuments and Comparison with Historical Drawings. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 2, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Ronchi, D.; Limongiello, M.; Demetrescu, E.; Ferdani, D. Multispectral UAV Data and GPR Survey for Archeological Anomaly Detection Supporting 3D Reconstruction. Sensors 2023, 23, 2769. [Google Scholar] [CrossRef] [PubMed]
- Cabrelles, M.; Lerma, J.L.; García-Asenjo, L.; Garrigues, P.; Martínez, L. Long and close-range terrestrial photogrammetry for rocky landscape deformation monitoring. In Proceedings of the 5th Joint International Symposium on Deformation Monitoring (JISDM 2022), València, Spain, 20–22 June 2022; pp. 20–22. [Google Scholar] [CrossRef]
- Biljecki, F. Level of Detail in 3D City Models. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2017; p. 353. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City Kevin Lynch; Massachusetts Institute of Technology: Cambridge, MA, USA; London, UK, 1960; Volume 8, Available online: https://www.miguelangelmartinez.net/IMG/pdf/1960_Kevin_Lynch_The_Image_of_The_City_book.pdf (accessed on 1 May 2023).
- Iyer, R. Why Did Kings Construct Monuments? 2020. Available online: https://www.tutorialspoint.com/why-did-kings-construct-monuments (accessed on 15 August 2022).
- Joye, Y.; Dewitte, S. Up speeds you down. Awe-evoking monumental buildings trigger behavioral and perceived freezing. J. Environ. Psychol. 2016, 47, 112–125. [Google Scholar] [CrossRef] [Green Version]
- Safvi, R. Shahjahanabad: The Living City of Old Delhi; HarperCollins: Noida, India, 2020. [Google Scholar]
- Hollis, L. How Are Protected Views Shaping Cities. The Guardain. 14 July 2015. Available online: https://www.theguardian.com/cities/2015/jul/14/how-protected-views-shaping-cities-heritage-development (accessed on 24 August 2022).
- Ghuffar, S. Satellite Stereo Based Digital Surface Model Generation Using Semi Global Matching in Object and Image Space. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III-1, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Stucker, C.; Schindler, K. RESDEPTH: A deep residual prior for 3D reconstruction from high-resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2022, 183, 560–580. [Google Scholar] [CrossRef]
- Gröger, G.; Kolbe, T.H.; Czerwinski, A.; Nagel, C. OpenGIS City Geography Markup Language (CityGML) Encoding Standard; Open Geospatial Consortium: Rockville, MD, USA, 2008; p. 234. Available online: http://www.opengis.net/spec/citygml/2.0 (accessed on 20 March 2023).
- Old Delhi, Central Delhi|GeoIQ. 2020. Available online: https://geoiq.io/places/Old-Delhi/9hFVEGB8yk (accessed on 12 August 2022).
- Wang, J.; Georganos, S.; Kuffer, M.; Abascal, A.; Vanhuysse, S. On the knowledge gain of urban morphology from space. Comput. Environ. Urban Syst. 2022, 95, 101831. [Google Scholar] [CrossRef]
- USGS. USGS EROS Archive—Declassified Data—Declassified Satellite Imagery—3; U.S. Geological Survey: Reston, VA, USA, 2018. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-3#overview (accessed on 19 October 2022).
- Oder, F.C.; Fitzpatrick, J.; Worthman, P. The Hexagon Story; National Reconnaissance Office, Center for the Study of National Reconnaissance: Chantilly, VA, USA, 2012. Available online: https://books.google.nl/books?id=Qdz_YQ3IUpQC&printsec=frontcover#v=onepage&q&f=false (accessed on 20 October 2022).
- Dehecq, A.; Gardner, A.S.; Alexandrov, O.; McMichael, S.; Hugonnet, R.; Shean, D.; Marty, M. Automated Processing of Declassified KH-9 Hexagon Satellite Images for Global Elevation Change Analysis Since the 1970s. Front. Earth Sci. 2020, 8, 516. [Google Scholar] [CrossRef]
- Beyer, R.A.; Alexandrov, O.; McMichael, S. The Ames Stereo Pipeline: NASA’s Open Source Software for Deriving and Processing Terrain Data. Earth Space Sci. 2018, 5, 537–548. [Google Scholar] [CrossRef]
- Beyer, R.A.; Alexandrov, O.; Mcmichael, S. Ames Stereo Pipeline Documentation Release 3.1.0; Ames Research Center, NASA: Moffett Field, CA, USA, 2022. Available online: https://github.com/NeoGeographyToolkit/StereoPipeline/releases/download/3.0.0/asp_book.pdf (accessed on 4 December 2022).
- Wang, Z.; Jiang, K.; Yi, P.; Han, Z.; He, Z. Ultra-dense GAN for satellite imagery super-resolution. Neurocomputing 2020, 398, 328–337. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, W.; Hu, A.; Xie, Z.; Xie, X.; Tao, L. TE-SAGAN: An Improved Generative Adversarial Network for Remote Sensing Super-Resolution Images. Remote Sens. 2022, 14, 2425. [Google Scholar] [CrossRef]
- Antic, J. Home—DeOldify. 2022. Available online: https://deoldify.ai/ (accessed on 23 August 2022).
- Kapoor, A.; Larco, H.; Kiveris, R. Nostalgin: Extracting 3D city models from historical image data. arXiv 2019, arXiv:1905.01772. [Google Scholar] [CrossRef] [Green Version]
No. | Data | Date | GSD | Provider | Remarks | Used in |
---|---|---|---|---|---|---|
1 | Pleiades Tri-Stereo VHR | 18 December 2020 | 0.5 m | ESA | PANSHARP | Present |
2 | Worldview-1 Stereo VHR | 19 March 2021 | 0.58 m | ESA | PAN | Present |
3 | Worldview-3 VHR | 7 February 2022 | 0.3 m | ESA | MUL 8-Bands | Present |
4 | Building footprints | 2018 | - | SPA | .shp file | Present |
5 | Hexagon KH-9 Stereo pair | 4 December 1977 | 0.7 m | USGS | Scanned B/W | Past |
6 | Building footprints | 1977 | - | Self-digitized | .shp file | Past |
No. | Description | Ground Ref (m) | WV-1 DSM (m) | PL DSM (m) | Combined (m) |
---|---|---|---|---|---|
1 | Red Fort: Front Centre | 34.0 | 39.97 | 35.7 | 32.0 |
2 | Red Fort Walls | 20.6 | 24.04 | 22.36 | 19.52 |
3 | Battlement | 12.6 | 16.45 | 14.67 | 12.54 |
4 | Jama Masjid, Main Gate 2, opp. domes | 14.0 | 18.48 | 12.68 | 13.74 |
5 | Jama Masjid, Corridor Roof | 5.8 | 7.32 | 7.83 | 5.59 |
6 | Fatehpuri Masjid, inside the entrance | 13.0 | 17.79 | 15.52 | 11.48 |
7 | SBI Building | 20.1 | 23.46 | 23.87 | 21.34 |
8 | Shri Gauri Shankar Mandir | 25.0 | 32.84 | 27.91 | 25.52 |
9 | Shri Digambar Jain Lal Mandir, side dome | 19.4 | 16.0 | 22.8 | 21.13 |
10 | Shri Digambar Jain Lal Mandir, main dome | 21.2 | 43.24 | 23.26 | 26.07 |
11 | Town Hall Library | 13.6 | 14.7 | 13.03 | 12.72 |
12 | MCD Civic Centre | 100.8 | 108.52 | 104.2 | 97.68 |
13 | TRAI Building | 32.1 | 39.81 | 30.2 | 32.96 |
14 | Zakir Hussain, Delhi University | 28.3 | 30.53 | 31.42 | 27.74 |
15 | Government of India, Press | 32.6 | 34.68 | 30.07 | 31.83 |
16 | Konnectus Tower | 36.2 | 41.74 | 42.21 | 39.55 |
17 | Common building 17 | 11.9 | 18.54 | 13.4 | 16.03 |
18 | Common building 18 | 10.6 | 14.09 | 9.18 | 14.89 |
19 | Common building 19 | 10.81 | 9.17 | 12.3 | 11.97 |
20 | Common building 20 | 11.8 | 8.23 | 10.97 | 11.88 |
21 | Common building 21 | 15.65 | 18.92 | 16.47 | 16.62 |
RMSE | 6.62 | 2.55 | 2.15 m |
GCP | Present DTM (m) | 1970s DTM (m) | Error (m) |
---|---|---|---|
1 | 160.70 | 160.29 | −0.40 |
2 | 161.11 | 163.77 | −2.34 |
3 | 166.34 | 165.32 | −0.96 |
4 | 159.62 | 160.0 | 0.42 |
5 | 162.80 | 161.43 | −1.22 |
6 | 163.0 | 164.13 | 1.07 |
7 | 165.5 | 165.24 | −0.31 |
8 | 164.0 | 165.40 | 1.37 |
9 | 163.55 | 165.32 | 1.87 |
10 | 166.19 | 165.16 | −1.03 |
RMSE | 1.25 + 2.15 (present DTM) = 3.40 m |
Range in Meters | Building Count—1970s | Building Count—2020s | % Increase | % Decrease |
---|---|---|---|---|
1 to 4 | 116 | 133 | 12.7% | |
4 to 8 | 872 | 86 | 90.1% | |
8 to 12 | 853 | 772 | 9.4% | |
12 to 16 | 146 | 2293 | 93.6% | |
16 to 20 | 12 | 1694 | 99.2% | |
20 to 24 | 0 | 514 | 100% | |
24 to 28 | 0 | 39 | 100% | |
Avg Increase 81.1% | Avg Decrease 49.8% |
Observation Point | No. of Targets | Visible in 1977 | Visible in 2022 | Visibility Reduction |
---|---|---|---|---|
A | 7 | 2 (28.5%) | 1 (14.2%) | 14.3% |
B | 10 | 6 (60%) | 6 (60%) | 0% |
C | 6 | 4 (66.6%) | 1 (16.6%) | 50% |
D | 8 | 3 (37.5%) | 1 (12.5%) | 25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajan, V.; Koeva, M.; Kuffer, M.; Da Silva Mano, A.; Mishra, S. Three-Dimensional Modelling of Past and Present Shahjahanabad through Multi-Temporal Remotely Sensed Data. Remote Sens. 2023, 15, 2924. https://doi.org/10.3390/rs15112924
Rajan V, Koeva M, Kuffer M, Da Silva Mano A, Mishra S. Three-Dimensional Modelling of Past and Present Shahjahanabad through Multi-Temporal Remotely Sensed Data. Remote Sensing. 2023; 15(11):2924. https://doi.org/10.3390/rs15112924
Chicago/Turabian StyleRajan, Vaibhav, Mila Koeva, Monika Kuffer, Andre Da Silva Mano, and Shubham Mishra. 2023. "Three-Dimensional Modelling of Past and Present Shahjahanabad through Multi-Temporal Remotely Sensed Data" Remote Sensing 15, no. 11: 2924. https://doi.org/10.3390/rs15112924
APA StyleRajan, V., Koeva, M., Kuffer, M., Da Silva Mano, A., & Mishra, S. (2023). Three-Dimensional Modelling of Past and Present Shahjahanabad through Multi-Temporal Remotely Sensed Data. Remote Sensing, 15(11), 2924. https://doi.org/10.3390/rs15112924