Seismic Risk Regularization for Urban Changes Due to Earthquakes: A Case of Study of the 2023 Turkey Earthquake Sequence
Abstract
:1. Introduction
2. Method
3. Experimental Test
3.1. The 2023 Turkey Earthquakes
3.2. Dataset
3.3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohta, Y.; Murakami, H.; Watoh, Y.; Koyama, M. A model for evaluating life span characteristics of entrapped occupants by an earthquake. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Jones, C.E.; P, M.; Rao, S. The NISAR Mission’s Capabilities for Natural Hazards Monitoring. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1711–1714. [Google Scholar] [CrossRef]
- MAXAR. Open Data Program. 2023. Available online: https://www.maxar.com/open-data/ (accessed on 17 February 2023).
- Planet. Disaster DATA. 2023. Available online: https://www.planet.com/disasterdata/ (accessed on 1 March 2023).
- Koshimura, S.; Moya, L.; Mas, E.; Bai, Y. Tsunami damage detection with remote sensing: A review. Geosciences 2020, 10, 177. [Google Scholar] [CrossRef]
- Yamazaki, F.; Yano, Y.; Matsuoka, M. Visual damage interpretation of buildings in Bam city using QuickBird images following the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, 329–336. [Google Scholar] [CrossRef]
- Matsuoka, M.; Yamazaki, F. Building damage mapping of the 2003 Bam, Iran, earthquake using Envisat/ASAR intensity imagery. Earthq. Spectra 2005, 21, 285–294. [Google Scholar] [CrossRef]
- Liu, W.; Yamazaki, F.; Gokon, H.; Koshimura, S. Extraction of Tsunami-Flooded Areas and Damaged Buildings in the 2011 Tohoku-Oki Earthquake from TerraSAR-X Intensity Images. Earthq. Spectra 2013, 29, 183–200. [Google Scholar] [CrossRef]
- Yamazaki, F.; Liu, W. Remote sensing technologies for post-earthquake damage assessment: A case study on the 2016 Kumamoto earthquake. In Proceedings of the 6th Asia Conference on Earthquake Engg, Cebu City, Philippines, 22–24 September 2016. [Google Scholar]
- Moya, L.; Yamazaki, F.; Liu, W.; Yamada, M. Detection of collapsed buildings from lidar data due to the 2016 Kumamoto earthquake in Japan. Nat. Hazards Earth Syst. Sci. 2018, 18, 65–78. [Google Scholar] [CrossRef]
- Moya, L.; Zakeri, H.; Yamazaki, F.; Liu, W.; Mas, E.; Koshimura, S. 3D gray level co-occurrence matrix and its application to identifying collapsed buildings. ISPRS J. Photogramm. Remote Sens. 2019, 149, 14–28. [Google Scholar] [CrossRef]
- Moya, L.; Muhari, A.; Adriano, B.; Koshimura, S.; Mas, E.; Marval-Perez, L.R.; Yokoya, N. Detecting urban changes using phase correlation and L1-based sparse model for early disaster response: A case study of the 2018 Sulawesi Indonesia earthquake-tsunami. Remote Sens. Environ. 2020, 242, 111743. [Google Scholar] [CrossRef]
- Kijewski-Correa, T.; Roueche, D.B.; Mosalam, K.M.; Prevatt, D.O.; Robertson, I. StEER: A community-centered approach to assessing the performance of the built environment after natural hazard events. Front. Built Environ. 2021, 7, 636197. [Google Scholar] [CrossRef]
- Okada, G.; Moya, L.; Mas, E.; Koshimura, S. The potential role of news media to construct a machine learning based damage mapping framework. Remote Sens. 2021, 13, 1401. [Google Scholar] [CrossRef]
- Wieland, M.; Liu, W.; Yamazaki, F. Learning change from synthetic aperture radar images: Performance evaluation of a support vector machine to detect earthquake and tsunami-induced changes. Remote Sens. 2016, 8, 792. [Google Scholar] [CrossRef]
- Bai, Y.; Adriano, B.; Mas, E.; Koshimura, S. Building damage assessment in the 2015 Gorkha, Nepal, earthquake using only post-event dual polarization synthetic aperture radar imagery. Earthq. Spectra 2017, 33, 185–195. [Google Scholar] [CrossRef]
- Adriano, B.; Xia, J.; Baier, G.; Yokoya, N.; Koshimura, S. Multi-source data fusion based on ensemble learning for rapid building damage mapping during the 2018 sulawesi earthquake and tsunami in Palu, Indonesia. Remote Sens. 2019, 11, 886. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, C.; Singh, S.; Koch, M.; Adriano, B.; Mas, E.; Koshimura, S. A framework of rapid regional tsunami damage recognition from post-event TerraSAR-X imagery using deep neural networks. IEEE Geosci. Remote Sens. Lett. 2017, 15, 43–47. [Google Scholar] [CrossRef]
- Saha, S.; Bovolo, F.; Bruzzone, L. Building change detection in VHR SAR images via unsupervised deep transcoding. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1917–1929. [Google Scholar] [CrossRef]
- Adriano, B.; Yokoya, N.; Xia, J.; Miura, H.; Liu, W.; Matsuoka, M.; Koshimura, S. Learning from multimodal and multitemporal earth observation data for building damage mapping. ISPRS J. Photogramm. Remote Sens. 2021, 175, 132–143. [Google Scholar] [CrossRef]
- Nava, L.; Monserrat, O.; Catani, F. Improving landslide detection on SAR data through deep learning. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4020405. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Ghasemi, M.; Matsuoka, M.; Yagi, K.; Zulfikar, A.C. A Deep Learning Model for Road Damage Detection After an Earthquake Based on Synthetic Aperture Radar (SAR) and Field Datasets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5753–5765. [Google Scholar] [CrossRef]
- Gupta, R.; Goodman, B.; Patel, N.; Hosfelt, R.; Sajeev, S.; Heim, E.; Doshi, J.; Lucas, K.; Choset, H.; Gaston, M. Creating xBD: A dataset for assessing building damage from satellite imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 10–17. [Google Scholar]
- Zhao, G.; Peng, Y. Semisupervised SAR image change detection based on a siamese variational autoencoder. Inf. Process. Manag. 2022, 59, 102726. [Google Scholar] [CrossRef]
- Li, W.; Ma, P.; Wang, H.; Fang, C. SAR-TSCC: A Novel Approach for Long Time Series SAR Image Change Detection and Pattern Analysis. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5203016. [Google Scholar] [CrossRef]
- Katayama, T.; Yamazaki, F.; Nagata, S.; Lu, L.; Turker, T. A strong motion database for the Chiba seismometer array and its engineering analysis. Earthq. Eng. Struct. Dyn. 1990, 19, 1089–1106. [Google Scholar] [CrossRef]
- Aoi, S.; Kunugi, T.; Fujiwara, H. Strong-motion seismograph network operated by NIED: K-NET and KiK-net. J. Jpn. Assoc. Earthq. Eng. 2004, 4, 65–74. [Google Scholar] [CrossRef]
- Ozawa, S.; Nishimura, T.; Suito, H.; Kobayashi, T.; Tobita, M.; Imakiire, T. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature 2011, 475, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Moya, L.; Yamazaki, F.; Liu, W. Comparison of coseismic displacement obtained from GEONET and seismic networks. J. Earthq. Tsunami 2016, 10, 1640002. [Google Scholar] [CrossRef]
- Lu, L.; Yamazaki, F.; Katayama, T. Soil amplification based on seismometer array and microtremor observations in Chiba, Japan. Earthq. Eng. Struct. Dyn. 1992, 21, 95–108. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Matsuoka, M. Nationwide 7.5-arc-second Japan engineering geomorphologic classification map and Vs30 zoning. J. Disaster Res. 2013, 8, 904–911. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Feizizadeh, B.; Matsuoka, M. DEM-based Vs30 map and terrain surface classification in nationwide scale—A case study in Iran. ISPRS Int. J. Geo-Inf. 2019, 8, 537. [Google Scholar] [CrossRef]
- Yamazaki, F.; Murao, O. Vulnerability functions for japanese. Implic. Recent Earthquakes Seism. Risk 2000, 2, 91. [Google Scholar]
- Porter, K.; Kennedy, R.; Bachman, R. Creating fragility functions for performance-based earthquake engineering. Earthq. Spectra 2007, 23, 471–489. [Google Scholar] [CrossRef]
- Koshimura, S.; Oie, T.; Yanagisawa, H.; Imamura, F. Developing fragility functions for tsunami damage estimation using numerical model and post-tsunami data from Banda Aceh, Indonesia. Coast. Eng. J. 2009, 51, 243–273. [Google Scholar] [CrossRef]
- Mas, E.; Paulik, R.; Pakoksung, K.; Adriano, B.; Moya, L.; Suppasri, A.; Muhari, A.; Khomarudin, R.; Yokoya, N.; Matsuoka, M.; et al. Characteristics of tsunami fragility functions developed using different sources of damage data from the 2018 Sulawesi earthquake and tsunami. Pure Appl. Geophys. 2020, 177, 2437–2455. [Google Scholar] [CrossRef]
- Torisawa, K.; Matsuoka, M.; Horie, K.; Inoguchi, M.; Yamazaki, F. Development of Fragility Curves for Japanese Buildings Based on Integrated Damage Data from the 2016 Kumamoto Earthquake. J. Disaster Res. 2022, 17, 464–474. [Google Scholar] [CrossRef]
- Moya, L.; Mas, E.; Adriano, B.; Koshimura, S.; Yamazaki, F.; Liu, W. An integrated method to extract collapsed buildings from satellite imagery, hazard distribution and fragility curves. Int. J. Disaster Risk Reduct. 2018, 31, 1374–1384. [Google Scholar] [CrossRef]
- Moya, L.; Marval Perez, L.R.; Mas, E.; Adriano, B.; Koshimura, S.; Yamazaki, F. Novel unsupervised classification of collapsed buildings using satellite imagery, hazard scenarios and fragility functions. Remote Sens. 2018, 10, 296. [Google Scholar] [CrossRef]
- Moya, L.; Geiß, C.; Hashimoto, M.; Mas, E.; Koshimura, S.; Strunz, G. Disaster intensity-based selection of training samples for remote sensing building damage classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8288–8304. [Google Scholar] [CrossRef]
- Molas, G.L.; Yamazaki, F. Attenuation of earthquake ground motion in Japan including deep focus events. Bull. Seismol. Soc. Am. 1995, 85, 1343–1358. [Google Scholar] [CrossRef]
- Shabestari, K.T.; Yamazaki, F. Near-fault spatial variation in strong ground motion due to rupture directivity and hanging wall effects from the Chi-Chi, Taiwan earthquake. Earthq. Eng. Struct. Dyn. 2003, 32, 2197–2219. [Google Scholar] [CrossRef]
- Shabestari, K.T.; Yamazaki, F.; Saita, J.; Matsuoka, M. Estimation of the spatial distribution of ground motion parameters for two recent earthquakes in Japan. Tectonophysics 2004, 390, 193–204. [Google Scholar] [CrossRef]
- Önder, Çetin.; Bray, J.; Frost, D.; Hortacsu, A.; Miranda, E.; Moss, R.; Stewart, J. February 6, 2023 Türkiye Earthquakes: Report on Geoscience and Engineering Impacts; Technical Report GEER Association Report 082; The Earthquake Engineering Research Institute and Geotechnical Extreme Event Reconnaissance Association and The Earthquake Engineering Association and Earthquake Engineering Foundation of Türkiye: Istanbul, Turkey, 2023. [Google Scholar]
- USGS. M7.8 and M7.5 Kahramanmaraş Earthquake Sequence Struck near Nurdağı, Turkey (Türkiye). 2023. Available online: https://www.usgs.gov/news/featured-story/m78-and-m75-kahramanmaras-earthquake-sequence-near-nurdagi-turkey-turkiye (accessed on 6 February 2023).
- Disaster and Emergency Management Authority. Press Bulletin-32 about the Earthquake in Kahramanmaras; Technical Report; Ministry of Interior: Ankara, Turkey, 2023. [Google Scholar]
- Earthquake Engineering Research Center. Preliminary Reconnaissance Report on February 6, 2023, Pazarcik Mw=7.7 and Elbistan Mw=7.6, Kahramanmaras-Turkiye Earthquakes; Technical Report METU/EERC 2023-01; Middle East Technical University: Ankara, Turkey, 2023. [Google Scholar]
- Thompson, A. Why the Earthquake in Turkey Was So Damaging and Deadly. Scientific American. 2023. Available online: https://www.scientificamerican.com/article/why-the-earthquake-in-turkey-was-so-damaging-and-deadly/ (accessed on 20 February 2023).
- BBC. Turkey Earthquake: Why Did So Many Buildings Collapse? 2023. Available online: https://www.bbc.com/news/64568826 (accessed on 20 February 2023).
- Karimzadeh, S.; Matsuoka, M.; Miyajima, M.; Adriano, B.; Fallahi, A.; Karashi, J. Sequential SAR Coherence Method for the Monitoring of Buildings in Sarpole-Zahab, Iran. Remote Sens. 2018, 10, 1255. [Google Scholar] [CrossRef]
- Moya, L.; Endo, Y.; Okada, G.; Koshimura, S.; Mas, E. Drawback in the Change Detection Approach: False Detection during the 2018 Western Japan Floods. Remote Sens. 2019, 11, 2320. [Google Scholar] [CrossRef]
- Moya, L.; Mas, E.; Koshimura, S. Learning from the 2018 Western Japan Heavy Rains to Detect Floods during the 2019 Hagibis Typhoon. Remote Sens. 2020, 12, 2244. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Matsuoka, M. A Preliminary Damage Assessment Using Dual Path Synthetic Aperture Radar Analysis for the M 6.4 Petrinja Earthquake (2020), Croatia. Remote Sens. 2021, 13, 2267. [Google Scholar] [CrossRef]
- Earth Observation Center. World Settlement Footprint 2019. Available online: https://download.geoservice.dlr.de/WSF2019/ (accessed on 17 February 2023).
- Marconcini, M.; Metz-Marconcini, A.; Esch, T.; Gorelick, N. Understanding current trends in global urbanisation-the world settlement footprint suite. GI_Forum 2021, 9, 33–38. [Google Scholar] [CrossRef]
- Erberik, M.A. Fragility-based assessment of typical mid-rise and low-rise RC buildings in Turkey. Eng. Struct. 2008, 30, 1360–1374. [Google Scholar] [CrossRef]
- USGS. M 7.8—26 Km ENE of Nurdağı, Turkey. 2023. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executive (accessed on 20 February 2023).
- The Independent. Watch Again: View from Hatay after Third Quake Hits Turkey. 2023. Available online: https://youtu.be/QkSjKtSj7Ls (accessed on 7 February 2023).
- StEER. StEER Network Activation. 2023. Available online: https://www.steer.network/kaharamanmaras (accessed on 22 February 2023).
- Amari, S.i. Backpropagation and stochastic gradient descent method. Neurocomputing 1993, 5, 185–196. [Google Scholar] [CrossRef]
- Robinson, C.; Fobi Nsutezo, S.; Pound, E.; Ortiz, A.; Rosa, M.; White, K.; Dodhia, R.; Zolli, A.; Birge, C.; Ferres, L.; et al. Turkey Earthquake Report; Technical Report MSR-TR-2023-7; Microsoft: Redmond, WA, USA, 2023. [Google Scholar]
- Planet. Planet’s Response to Earthquakes in Turkey and Syria. 2023. Available online: https://www.planet.com/pulse/planets-response-to-earthquakes-in-turkey-and-syria/ (accessed on 1 March 2023).
- MAXAR. Turkey and Syria Earthquake 2023. Available online: https://www.maxar.com/open-data/turkey-earthquake-2023 (accessed on 8 February 2023).
- IRIDeS. 2023 Türkiye-Syria Earthquake. Online. 2023. Available online: https://irides.maps.arcgis.com/apps/dashboards/ffb8ae5f27964ad8843c5e99556e0ff5 (accessed on 11 May 2023).
Sensor | Acquisition | Path | Polarization | Band | Type of Product | Acquisition Mode |
---|---|---|---|---|---|---|
Sentinel-1 | 9 February 2023 | Ascending | VV | C | SLC | IW |
Sentinel-1 | 28 January 2023 | Ascending | VV | C | SLC | IW |
Sentinel-1 | 16 January 2023 | Ascending | VV | C | SLC | IW |
Observed | ||||
---|---|---|---|---|
C | UC | Total | ||
Predicted | C | 2135 | 687 | 2822 |
UC | 226 | 1674 | 1900 | |
Total | 2361 | 2361 | 4722 |
UA | PA | F1 | |
---|---|---|---|
C | 0.75 | 0.90 | 0.82 |
UC | 0.88 | 0.71 | 0.79 |
Average | 0.82 | 0.81 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portillo, A.; Moya, L. Seismic Risk Regularization for Urban Changes Due to Earthquakes: A Case of Study of the 2023 Turkey Earthquake Sequence. Remote Sens. 2023, 15, 2754. https://doi.org/10.3390/rs15112754
Portillo A, Moya L. Seismic Risk Regularization for Urban Changes Due to Earthquakes: A Case of Study of the 2023 Turkey Earthquake Sequence. Remote Sensing. 2023; 15(11):2754. https://doi.org/10.3390/rs15112754
Chicago/Turabian StylePortillo, Aymar, and Luis Moya. 2023. "Seismic Risk Regularization for Urban Changes Due to Earthquakes: A Case of Study of the 2023 Turkey Earthquake Sequence" Remote Sensing 15, no. 11: 2754. https://doi.org/10.3390/rs15112754
APA StylePortillo, A., & Moya, L. (2023). Seismic Risk Regularization for Urban Changes Due to Earthquakes: A Case of Study of the 2023 Turkey Earthquake Sequence. Remote Sensing, 15(11), 2754. https://doi.org/10.3390/rs15112754