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Abstract: Damage identification soon after a large-magnitude earthquake is a major problem for
early disaster response activities. The faster the damaged areas are identified, the higher the survival
chances of inhabitants. Current methods for damage identification are based on the application of
artificial intelligence techniques using remote sensing data. Such methods require a large amount of
high-quality labeled data for calibration and/or fine-tuning processes, which are expensive in the
aftermath of large-scale disasters. In this paper, we propose a novel semi-supervised classification
approach for identifying urban changes induced by an earthquake between images recorded at
different times. We integrate information from a small set of labeled data with information from
ground motion and fragility functions computed on large unlabeled data. A relevant consideration is
that ground motion and fragility functions can be computed in real time. The urban changes induced
by the 2023 Turkey earthquake sequence are reported as an evaluation of the proposed method. The
method was applied to the interferometric coherence computed from C-band synthetic aperture radar
images from Sentinel-1. We use only 39 samples labeled as changed and 9000 unlabeled samples. The
results show that our method is able to identify changes between images associated with the effects
of an earthquake with an accuracy of about 81%. We conclude that the proposed method can rapidly
identify affected areas in the aftermath of a large-magnitude earthquake.

Keywords: change detection; Turkey earthquake; regularization; semi-supervised classification

1. Introduction

Earthquakes of large magnitude can cause significant human losses and damage to
infrastructure. Notable examples include the 2011 Tohoku-Oki earthquake–tsunami, the
2010 Chile earthquake, the 2016 Mexico earthquake, and the recent 2023 Turkey earthquake.
Efficient and prompt disaster response to such events is crucial. The faster the collapsed
structures can be identified, the higher the chances of survival for entrapped occupants
under collapsed buildings [1]. One way to support the early disaster response phase is
by creating damage maps, as they can be used to prioritize areas for search and rescue
activities and healthcare system reconstruction.

Currently, remote sensing technology plays a major role in creating damage maps
within a few days of a disaster. The primary technique used is change detection on images
captured before and after an earthquake. Satellite images can cover large areas, providing
a general perspective of all the disaster’s effects. Many satellite data, such as Landsat [2],
Sentinel-1 [3], and Sentinel-2 [4] images, are available to the public free of charge. In addi-
tion, the joint mission of the U.S. National Aeronautics and Space Administration (NASA)
and the Indian Space Research Organisation (ISRO) launching in 2024 will provide L-band
synthetic aperture Radar (SAR) images [5]. It is also worth noting that the private sector has
provided significant support for research and disaster relief efforts [6,7]. Remote sensing
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has been extensively applied to identify the effects of earthquakes. Koshimura et al. [8]
conducted a comprehensive review of remote sensing applications for tsunami damage
detection. A visual inspection of damaged buildings was performed in [9] following the
2003 Bam, Iran, earthquake using high-resolution optical images. Matsuoka et al. [10]
proposed two hand-engineered features to identify damage from SAR images, which were
later used in [11] to identify affected areas following the 2011 Tohoku-Oki earthquake
from TerraSAR images. Yamazaki and Liu [12] provided a comprehensive summary of the
available remote sensing data for the 2016 Kumamoto, Japan, earthquake and [13] used
LiDAR data to identify collapsed buildings. Moya et al. [14] proposed three-dimensional
texture analysis to identify collapsed buildings following earthquakes, demonstrating its
application in SAR images and LiDAR data. Moya et al. [15] proposed the use of phase
correlation to identify changes between multispectral images that are not coregistered.

Alongside the development of remote sensing for the detection of changes caused by
earthquakes, other fields have also advanced. The development of digital communication
has enabled researchers and engineers from around the world to collaborate in real time.
One example is the Structural Extreme Events Reconnaissance (StEER) framework, which
gathers information from field surveys, social media, and news to provide an assessment
of the affected area [16]. In [17], the potential usefulness of news and social media data
for remote sensing-based damage mapping was proposed. Machine learning and deep
learning applied to remote sensing data have also had a significant impact. Methods
such as support vector machines [14,18,19], logistic regression [15], and random forest [20]
have been adopted to map the effects of earthquakes. In recent years, deep learning
methods have been applied intensively, and earthquake damage mapping is no excep-
tion. One of the earliest applications can be found in [21]. A cycle-consistent generative
adversarial network was used in [22] to calibrate a generator network to transcode SAR
images into the optical image domain. Then, the generator was used as a deep feature
for change detection caused by the L’Aquila earthquake. In [23], the performance of con-
volutional neural networks (CNNs) under different settings of input data was evaluated.
Nava et al. [24] used CNNs to identify changes associated with landslides caused by the
2018 Hokkaido, Japan, earthquake. In [25], a multilayer perceptron (MLP) was employed
to identify changes in roads after earthquakes.

Machine/deep learning methods require a large amount of high-quality training data
to be effective. Unfortunately, obtaining training samples for damage mapping is expensive
and time-consuming, making it challenging to develop accurate models. To address this
challenge, researchers have made significant efforts to collect training data from previous
events [23,26]. However, there is still no exhaustive set containing training samples of all
building structural systems. Additionally, training data are limited to samples recorded
with specific remote sensors. Semi-supervised methods use information from unlabeled
samples to mitigate the effect of a low number of labeled samples. In [27], a neural network
for change detection in SAR images was calibrated using a semi-supervised approach.
First, an initial layerwise calibration in which each layer represents part of an encoder of a
variational autoencoder was performed using a large set of unlabeled samples. Then, the
neural network was fine-tuned with the labeled samples. A synthetic sample generation
model was proposed in [28] to mitigate the need for more real training data for change
detection in long-time series SAR images. It is worth noting that images captured in
the aftermath of a large earthquake often contain a large number of unlabeled samples,
which may serve as an essential source of information and potentially reduce the heavy
dependence on manually labeled data.

Although they cannot be predicted yet, earthquakes are perhaps one of the best-
monitored disasters. Remote sensing is not the only source of information when an earth-
quake happens. Most earthquake-prone areas are equipped with ground motion sensors to
measure earthquake waves in real time [29,30]. Global navigation satellite system (GNSS)
stations are also installed to monitor permanent crustal deformation [31,32]. Furthermore,
the dynamic properties of soils are investigated to identify potential amplification of earth-
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quake waves [33–35]. Such information is extremely valuable, as it provides insight into
the perturbation applied to buildings, enabling the computation of the total performance
of infrastructure. A fragility function is a probabilistic estimation of the damage level in
a building as a function of a ground motion parameter [36–40] and is a topic that has
been studied for several decades. It is believed that these other sources of information
should be used together with remote sensing data to identify changes. In [41], the use
of fragility functions, together with remote sensing data, was proposed to automatically
classify buildings as either collapsed or non-collapsed. However, the proposed method
was limited to only a two-dimensional feature space. The method was extended to an
n-dimensional feature space in [42]. In [43], it was pointed out that, in some situations,
there are no fragility functions available; thus, a novel method to collect training samples
using only a strong motion parameter was proposed.

This study represents a follow-up of the work presented in [42]. Here, we propose to
employ information of the fragility function to regularize the calibration of a change classi-
fier in a semi-supervised classification problem. Our goal is to exploit the small amount of
information available regarding affected areas between the occurrence of a disaster and
the recording time of satellite images, as well as the vast number of unlabeled samples.
The rest of this manuscript is structured as follows. Section 2 reports the proposed method
to include information from ground motion and the fragility function as a regularization
term in the calibration process. Section 3 shows an experimental evaluation of the pro-
posed method for the 2023 Turkey earthquake sequence. Section 4 discusses some issues
associated with the proposed method in detail. Finally, Section 5 presents our conclusions.

2. Method

The fundamental basis of the methodology lies in the well-known spatial pattern of
earthquakes, as schematically presented in Figure 1. When an earthquake occurs, waves
travel from the source in all directions. The wave amplitude decreases while moving
away from the source, although it may exhibit local amplifications due to soil mechanical
properties. Such a pattern is referred to as the attenuation of earthquake waves [44–46].
In engineering practice, peak ground acceleration (PGA) and peak ground velocity (PGV)
have been used to quantify amplitude. For generalization, in this study, a measure of the
wave amplitude is referred to as a demand parameter. It is also known that most damaged
buildings are located in areas where the demand is high. However, it should be noted
that undamaged buildings can also be observed in high-demand areas. On the other hand,
areas with very low demand contain only undamaged buildings. Furthermore, because
of the attenuation pattern of the demand, more undamaged buildings will appear as the
observed area is expanded.

The proposed method represents a follow-up of the method proposed in [42] for
unsupervised change detection, with modifications for semi-supervised change detection.
Given the occurrence of a large-magnitude earthquake, it is very likely that a small and
incomplete inventory of the affected buildings will be available within hours. Thus, we
are given a set of l labeled samples, {xi, yi}l

i=1, where xi is a sample feature, and yi its
label. At the same time, a much larger set of u unlabeled samples, {xi}l+u

i=l+1, is also given.
Consider the set {ri}l+u

i=1 , which contains measurements of the severity of the disaster at
the location of each sample. Such information is computed from the demand parameter,
which is available in real-time, as well as fragility functions, which are available before the
disaster. Let us consider a general classifier function ( f ). The regularized loss function to
be minimized is defined as

L =
l

∑
i=1

V(xi, yi, f ) + γRR( f ) (1)

where V denotes a cost function that quantifies the error on a labeled sample, R( f ) reg-
ularize f to consider the complexities in the spatial distribution of the demand and the
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severity of the earthquake at each sample, and γR is a regularization factor. Hereafter,R( f )
is denoted as risk regularization.

0

20

40

60

80

100

Figure 1. Scheme of the relation between damaged samples and spatial distribution of the de-
mand. Red to yellow tones denote demand. Blue and green marks show undamaged and damaged
samples, respectively.

A modification of cross entropy is adopted for risk regularization.

R( f ) = −1
l+u

∑
i=l

(
ri log f (xi) + (1− ri) log(1− f (xi)

)
(2)

ri = Φ(di) (3)

where di denotes the demand experienced by sample xi, and Φ is a fragility function.
In risk analysis, Φ is usually represented as a cumulative distribution function and is
formally defined as the probability that an asset has reached or exceeded a certain level of
damage, such as collapse, given that it has experienced a demand (di) [37]. Note that risk
regularization induces f to classify most samples with low r as unchanged. More samples
with large r values are classified as changed. Furthermore, when γR → ∞, then

L
γR
≈ R( f ) (4)

the loss approximates to the loss proposed in [42] for an unsupervised problem. On the
other hand, when γR → 0, the equation becomes the loss of a supervised classification
problem. Furthermore, when γR = 1 and the study area is large enough, f tends to classify
all samples as unchanged because u � l and most unlabeled samples are unchanged.
We considered this behavior advantageous because it provides an upper bound of the
regularization factor, namely γR < 1, which is why a normalization to Equations (1) and (2)
by the size of the samples was not performed.
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3. Experimental Test
3.1. The 2023 Turkey Earthquakes

Most of Turkey is located on the Anatolian block and parts of the Eurasian, African,
and Arabian plates (Figure 2). The Anatolian block is limited by the North Anatolian
Fault in the north, the Hellenic and Cyprus subduction zones in the south, and the East
Anatolian Fault in the east. The East Anatolian fault is a 700 km long lateral strike-slip fault.
Geodetic, geomorphic, and paleoseismic studies indicate a slip rate of 10 mm/year [47].
On 6 February 2023 at 4:17 a.m. (UTC+3), an Mw 7.8 earthquake struck south–central
Turkey and the north of Syria. The event induced a large number of aftershocks, including
a second large Mw 7.7 event that occurred at 13:24 on the same day. All these events were
produced by the East Anatolian fault system [48].

East
	Ana
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	Fau

lt

North	An
atolian	F

ault

Cyprus	Arc

Hel
leni
c	A
rc

Figure 2. Study area. Blue rectangles show the location of the Sentinel-1 scenes. The red stars show
the location of the Mw. 7.8 mainshock and the Mw 6.8 and Mw 7.7 aftershocks. The red lines denote
the tectonic plate boundaries.

As of 16 February 2023, the government deployed 264,389 search and rescue workers,
12,600 vehicles, 26 ships, and an air bridge for early disaster response activities [49]. Fur-
thermore, 11,488 teams from different countries offered assistance. As of 18 February 2023,
more than 40,000 casualties and 110,000 injured people were reported. Researchers from
Middle East Technical University [50] provided one of the earliest reports regarding the
effects of the earthquake sequence. More than 100,000 collapsed or severely damaged
buildings were reported in several provinces, such as Kahramanmaraş, Adıyaman, Hatay,
Osmaniye, Gaziantep, Kilis, Şanlıurfa, Diyarbakır, Malatya, Adana, and Elazığ. The rea-
sons for the poor structural performance of the buildings remain controversial [51,52].
Moreover, liquefaction, a phenomenon that makes certain soils types behave like fluid
during earthquakes, was identified in the regions of Hatay-Paşaköy, Hatay-İskenderun,
Adıyaman-Gölbaşı, and Adıyaman-Türkoğlu.

3.2. Dataset

Two sets of three C-band SAR images from Sentinel-1 SAR were used in this study
(Table 1). The first images recorded in the ascending path after the event were obtained
on 9 February. Two scenes were necessary to cover most of the affected areas in this
study (Figure 2). Among the affected cities, the southern scene includes the cities of Hatay,
Islahiye, Gaziantep, Osmaniye, and Kilis, and the northern scene includes Kahramanmaraş
and Adana. For each scene, we selected two additional images recorded before the event
and with similar acquisition parameters. These images were recorded on 16 January and
28 January 2023. All images were Level-1 Single Look Complex (SLC) products acquired
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with vertical–vertical (VV) polarization in interferometric wide swath (IW) mode. The
images were coregistered using the image recorded on 28 January as the master image.
Note that it is common to use the post-event image as a slave image because during the
early disaster response, there is no available precise orbit information. We computed the
interferometric coherence as follows.

γ =
∑(i,j) IA

i,h IB∗
i,j√

∑(i,j) IA
i,j I

A∗
i,j IB

i,j I
B∗
i,j

(5)

where IA
i,j and IB

i,j denote the complex backscattering of arbitrary images A and B, respec-
tively, and * denotes the complex conjugate. The obtained values vary in the range of [0, 1],
where 1.0 corresponds to fully correlated data and 0.0 accounts for totally uncorrelated data.
Previous studies have shown that coherence can be used as a feature to identify changes
in urban areas with high accuracy [53–56]. Hereafter, we denote a coevent coherence (γco)
as the coherence computed between the post-event image and the image recorded on
28 January. Likewise, pre-event coherence (γpre) denotes the coherence computed between
the two pre-event images.

Table 1. Characteristics of the SAR imagery used in the experimental evaluation. Note that each
description represents two scenes (see Figures 2 and 3). VV: vertical–vertical; SLC: single look
complex; IW: interferometric wide swath.

Sensor Acquisition Path Polarization Band Type of
Product

Acquisition
Mode

Sentinel-1 9 February 2023 Ascending VV C SLC IW
Sentinel-1 28 January 2023 Ascending VV C SLC IW
Sentinel-1 16 January 2023 Ascending VV C SLC IW

As this study focuses on changes in urban areas, we used the World Settlement
Footprint (WSF) updated to 2019 to pass filter urban areas [57]. The Earth Observation
Center (EOC) of the German Aerospace Center (DLR) provided the dataset. The original
spatial resolution was 10m, but it was resampled to fit the coherence resolution. Further
details of the methods adopted to produce the settlement footprints can be found in [58].

Regarding the fragility function, we adopted the fragility function for low-rise concrete
buildings with infill walls proposed in [59]. Numerical simulations were adopted to
construct the fragility function. However, the parameters used to model the buildings were
selected to represent the properties of a building dataset collected in Düzce city after two
major earthquakes in 1999. The Düzce dataset contains buildings with construction years
ranging from 1962 to 1999. A cumulative log-normal distribution represents the fragility
function. Because the distribution parameters were not provided, we digitized the fragility
function plot and fitted a log-normal distribution using a procedure described in [37]. The
black marks in Figure 4 show the digitized values from [59], and the solid black line shows
the fitted log-normal function. The argument of the fragility function is the peak ground
velocity (PGV); we used the PGV map reported by the USGS [60] (Figure 3).

As pointed out in [17], information from news can be gathered as training data on
damaged buildings, and the Turkey earthquake is no exception. On 7 February 2023, The
Independent, an online newspaper, broadcast a video captured by a drone in the city of
Hatay [61]. We were able to geocode 35 collapsed buildings, the locations of which are
shown in Figure 3. In addition, the coordinates of four collapsed buildings were collected
from the StEER response to the Turkey earthquake sequence [62]. Furthermore, collapsed
buildings reported in OpenStreetMap as of 6 March 2023 were used for testing.
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Figure 3. PGV in cm/s according to the USGS [60]. Red stars show the location of the mainshock
and the two largest aftershocks as of 21 February. The cyan triangles denote the location of collapsed
buildings geocoded as of 8 February during the StEER Network activation. The black marks show
the location of 2361 collapsed buildings reported in OpenStreetMap as of 6 March 2023. The white
marks show the location of the cities of Kahramanmaras, Iskenderun, Hatay, Aleppo, Dayr Hafir,
Al-Safirah, Ma‘arat al-Nu‘man, and Kafr Nabl.
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Figure 4. Fragility function adjusted from [59] for low-rise reinforced concrete (RC) buildings (gray
solid line), low-rise RC buildings with infill walls (black solid line), mid-rise RC buildings (gray
dotted line), and mid-rise RC buildings with infill walls (gray dashed line). Black marks are the
values taken from [59] to fit the function for low-rise RC buildings with infill walls.



Remote Sens. 2023, 15, 2754 8 of 16

3.3. Results

In this experimental evaluation, sample consists of two features: pre-event and co-
event coherence, xi = (γpre, γco). The classifier function is a multilayer perceptron (MLP)
with four internal layers of 10, 20, 20, and 10 nodes, respectively, and a binary output.
The classification is performed over the urban footprint. Thus, each pixel is classified as
changed or unchanged. For the calibration, we used 39 changed samples collected until
8 February. Samples labeled as unchanged were not available as of 8 February; therefore,
they were not used in the calibration. The stochastic gradient descent method [63] was
adopted for the calibration of the MLP. We used 200 epochs for the calibration. A total of
9000 unlabeled samples uniformly distributed with respect to the demand were randomly
selected to be used in each epoch. A batch size of 1038 samples—1000 unlabeled samples
and 38 labeled samples—was used. Note that we used 38 labeled samples for calibration
and left one for testing. The calibration process was repeated 39 times, each with a different
labeled sample for testing from the initial pool of 39 labeled samples. The number of times
the testing sample was correctly classified is stored as an accuracy proxy. The accuracy
under different values of the risk regularization factor is depicted in Figure 5. As already
pointed out, when the risk regularization γR = 1.0, the testing sample was always classified
as unchanged. For the final calibration, we used γR = 1.14× 10−3.

10 3 10 2 10 1 100

R

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

Figure 5. Relationship between the risk regularization (γR) and the percentage of correctly classified
labeled samples (score). Note that when γ is greater than about 0.01, all samples are classified as
unchanged, and thus, the score equals zero.

The changes detected in the urban footprint are depicted in Figure 6. A closer look
shows that the earthquake dramatically affected the city of Antakya. On the other hand,
Allepo city shows fewer changes. Table 2 reports the result of collapsed buildings reported
in OpenStreetMap. To complete the testing set, 2361 samples were randomly collected from
cities with low demand, such as Kafr Nabl, Ma‘arat al-Nu‘man, and Dayr Hafir (Figure 3),
and considered unchanged. An overall accuracy of 81% was achieved. Furthermore,
the averaged user accuracy, producer accuracy, and F1 scores were 82%, 81%, and 80%,
respectively (Table 3).
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(a)

(b) (c)

(d)

(b)

(c)

(d)

Figure 6. (a) Map of changes in the urban footprint. Red and white pixels denote changed and
unchanged pixels in the urban footprint, respectively. Closer views of the cities of Antakya, Kahra-
manmaraş, and Aleppo are shown in (b–d), respectively.
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Table 2. Comparison of predictions from the classifier with labeled data. Changed samples were
labeled by a third party. Unchanged samples belong to the cities with very low PGV. C: changed
class, UC: unchanged class.

Observed

C UC Total

Predicted
C 2135 687 2822

UC 226 1674 1900
Total 2361 2361 4722

Table 3. User accuracy (UA), producer accuracy (PA), and F1 scores for the predictions reported in
Table 2.

UA PA F1

C 0.75 0.90 0.82
UC 0.88 0.71 0.79

Average 0.82 0.81 0.80

4. Discussion

We begin the discussion with a closer look at the changes detected in the results. The
previous section showed that the method identified 80% of collapsed buildings from an
inventory collected by third parties within the first weeks after the 2023 Turkey earth-
quakes. Here, we complement this analysis with a qualitative assessment performed from
a comparison with optical images. Visual interpretation of Google Earth images recorded
in December 2022 and April 2023 confirms that the detected changes include collapsed
buildings (Figure 7a,c,e). Furthermore, areas with no apparent change in a building’s roof
were classified as changed (Figure 7b,d,f). However, photos recorded in a field survey
conducted on 23 April 2023 verify that these areas contain severely damaged buildings
with many collapsed walls (Figure 8). The ability to classify severely damaged buildings as
changed lies in the hand-engineered feature used as input in the neural network classifier
(Equation (5)). Interferometric coherence is a measure of changes in phase between a pair
of SAR images. After an earthquake, an arbitrarily damaged building suffers deformations
independent of the deformation of a damaged neighboring building. Consequently, disre-
garding the building’s roof condition, the coevent coherence is low. On the other hand, the
pre-event coherence is high because the changes in the built-up area between 16 January
and 28 January are minimal. Likewise, a collapsed building exhibits the same pattern, that
is, a high pre-event coherence and a low coevent coherence.

The relevance of the proposed method is that it can be used for rapid mapping of the
effects of an earthquake. However, the reader should be aware of certain issues, such as
need for more detailed information on each building in the region of interest. Note that
in the experimental evaluation (Section 3), we chose to use the urban footprint from DLR
because there was no precise geocoded building inventory available over the whole region
of interest. It is necessary to know the building’s structural system (i.e., reinforced concrete
frames, steel frames) in order to determine appropriate fragility function. Thus, not all the
available fragility functions could be used. Instead, we used the fragility function for low-
rise concrete buildings with infill walls over the whole area, as it is the most representative
structural system of the building stock [59]. This assumption was confirmed on a field trip to
the Turkish cities of Hatay, Kahramanmaras, and Adana. The naive approach of using one
fragility function is not harmful in cases in which there is a predominant building type in the
study area. For instance, the fragility function of wooden buildings was used to successfully
identify collapsed buildings during the 2011 Tohoku-Oki earthquake–tsunami [41,42]. For
the current case study, Figure 4 shows the fragility function for low-rise concrete buildings
with infill walls, together with the fragility functions for high-rise concrete buildings with
infill walls, low-rise concrete buildings without infill walls, and high-rise concrete buildings
without infill walls. Note that the most significant difference between the fragility curves is
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about 20% with intermediate values of PGV. However, the differences are negligible for
low and high values of PGV. Generally, the performance of the proposed method increases
if a detailed geocoded inventory of the building stock is available, which will be a subject
of a future study.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Closer look at the results using Google Earth images of Hatay. (a,b) Images recorded in
December 2022 (image from Google, © 2023 Maxar Technologies). (c,d) Images recorded in April
2023 (image from Google, © 2023 Airbus). (e,f) Changes detected using the proposed method (base
image from Google, © 2023 Airbus). Red tones denote areas with changes, and white tones are areas
without changes. Blue marks denote the locations of the photos shown in Figure 8.

Over the days following the 6 February 2023 Turkey earthquake, some damage
maps were prepared using high-resolution optical images. For instance, the authors of
ref. [64] collaborated with Turkey’s Ministry of Interior Disaster and Emergency Man-
agement Presidency (AFAD) to identify damaged buildings in four cities: Turkoglu,
Nurdagi, Kahramanmaras, and Islahiye. Satellite imagery from Planet Labs [65] and Maxar
Technologies [66] was used in the referenced study. Another building damage map was
provided by the International Research Institute of Disaster Science, Tohoku University [67].
Their damage map was estimated from Maxar Technology imagery. Note that these studies
focused on cities with intermediate or large PGV, and there was prior knowledge that those
cities were affected. The coverage area of the imagery was limited to specific cities. It
is worth noting that our proposed method cannot be used with the same imagery used
in [64,67]. For the calibration of the classifier, unlabeled samples with low PGV are required,
which are not included in the imagery provided by Planet Labs or Maxar Technology. The
proposed method is better-suited for imagery with a medium resolution, such as SAR
images from Sentinel-1 acquired with IW mode or multispectral imagery from Sentinel-2
because their broad coverage includes areas with different levels of PGV. An important
advantage of broad coverage is that it can provide a broader perspective of the affected
areas and identify cities for which damage might not be known. The disadvantage of using
medium-resolution imagery is the limited capacity to estimate the damage at the building
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level. The application of our method with high-resolution images would require additional
images in cities with low PGV. However, with high resolution images, different types of
changes can be identified. This will be one subject of our future research.

(a) (b) (c)

(d)

Figure 8. Photos of buildings heavily damaged and collapsed during the 2023 Kahramanmaras,
Turkey, earthquakes. The photos were captured on 23 April 2023. The locations of the photos
are shown in Figure 7. (a) Obstruction of a narrow street because of debris from the collapse of a
building’s wall. (b) The collapse of infill walls of a five-storey building. (c) The collapse of infill
walls of a three-storey building. Note that the roofs of the buildings in (b,c), although severely
damaged, were almost unchanged. (d) View of a collapsed wall in a building (left) and a collapsed
building (center).

The proposed regularization can also be adopted as an alternative for fine-tuning tasks
in deep neural network (DNN) classifiers. A common practice of DNNs consists of first
pretraining a model with a large dataset collected from previous events, then fine tuning
with manually collected samples. It is our belief that the process of sample collection for
fine tuning can be alleviated by adding our regularization term; this will be the subject of
another future study.

In Section 2, it was stated that the proposed loss becomes the unsupervised method
proposed in [42] when the risk regularization becomes very large. When this modification
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was performed in the current experimental evaluation, the classifier did not generalize
and classified all samples as unchanged. The main reason for the poor performance is that
there is still a significant number of unchanged samples with intermediate/high demand.
This pattern was not observed in the case of the 2011 Tohoku-Oki earthquake–tsunami, for
which the method proposed in [42] achieved high accuracy. This comparison shows that
our method improves upon the method proposed in [42].

5. Conclusions

In this study, we proved that strong motion and fragility functions can support remote
sensing data to detect changes caused by earthquakes with very limited labeled samples.
We introduced a regularization term to be used in the loss function, which induces the
classifier to consider the spatial distribution of the demand (i.e., peak ground velocity or
peak ground acceleration) and the probability that a building will suffer damage under
such demand. The key aspect of the study is that both the demand and the probability
of damage can be computed in real time, and therefore, its calculation does not delay the
change detection mapping processing chain.

The proposed method was evaluated on the 2023 Turkey earthquake sequence. The
interferometric coherence computed from Sentinel-1 data before and during the earthquake
was used as a sample feature. A total of 39 labeled samples and 9000 unlabeled samples
were used during the calibration of the classifier function. To simulate a real situation, we
used only labeled samples collected before Sentinel-1 data were available, that is, during
the period of 6–8 February 2023. The results show about 80% of agreement with the damage
inventory reported by a third party.
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60. USGS. M 7.8—26 Km ENE of Nurdağı, Turkey. 2023. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/
us6000jllz/executive (accessed on 20 February 2023).

61. The Independent. Watch Again: View from Hatay after Third Quake Hits Turkey. 2023. Available online: https://youtu.be/
QkSjKtSj7Ls (accessed on 7 February 2023).

62. StEER. StEER Network Activation. 2023. Available online: https://www.steer.network/kaharamanmaras (accessed on 22 February 2023).
63. Amari, S.i. Backpropagation and stochastic gradient descent method. Neurocomputing 1993, 5, 185–196. [CrossRef]
64. Robinson, C.; Fobi Nsutezo, S.; Pound, E.; Ortiz, A.; Rosa, M.; White, K.; Dodhia, R.; Zolli, A.; Birge, C.; Ferres, L.; et al. Turkey

Earthquake Report; Technical Report MSR-TR-2023-7; Microsoft: Redmond, WA, USA, 2023.
65. Planet. Planet’s Response to Earthquakes in Turkey and Syria. 2023. Available online: https://www.planet.com/pulse/planets-

response-to-earthquakes-in-turkey-and-syria/ (accessed on 1 March 2023).
66. MAXAR. Turkey and Syria Earthquake 2023. Available online: https://www.maxar.com/open-data/turkey-earthquake-2023

(accessed on 8 February 2023).
67. IRIDeS. 2023 Türkiye-Syria Earthquake. Online. 2023. Available online: https://irides.maps.arcgis.com/apps/dashboards/ffb8

ae5f27964ad8843c5e99556e0ff5 (accessed on 11 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1553/giscience2021_01_s33
http://dx.doi.org/10.1016/j.engstruct.2007.07.016
https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executive
https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executive
https://youtu.be/QkSjKtSj7Ls
https://youtu.be/QkSjKtSj7Ls
https://www.steer.network/kaharamanmaras
http://dx.doi.org/10.1016/0925-2312(93)90006-O
https://www.planet.com/pulse/planets-response-to-earthquakes-in-turkey-and-syria/
https://www.planet.com/pulse/planets-response-to-earthquakes-in-turkey-and-syria/
https://www.maxar.com/open-data/turkey-earthquake-2023
https://irides.maps.arcgis.com/apps/dashboards/ffb8ae5f27964ad8843c5e99556e0ff5
https://irides.maps.arcgis.com/apps/dashboards/ffb8ae5f27964ad8843c5e99556e0ff5

	Introduction
	Method
	Experimental Test
	The 2023 Turkey Earthquakes
	Dataset
	Results

	Discussion
	Conclusions
	References

