Comparison of Satellite Platform for Mapping the Distribution of Mauritius Thorn (Caesalpinia decapetala) and River Red Gum (Eucalyptus camaldulensis) in the Vhembe Biosphere Reserve
Abstract
:1. Introduction
1.1. The Invasive Alien Species Problem
1.2. The Use of GIS and RS in Identifying IAPS
1.2.1. Aerial Photography
1.2.2. Multispectral Imagery
1.3. Trade-Offs Between Image Resolution and Mapping Accuracy
1.4. Identifying the Potential Distribution of Invasive Alien Species
Indirect Identification of Areas Vulnerable to Invasion Using RS and GIS
1.5. Limitations of RS Applications to IAPS
2. Materials and Methods
2.1. Study Region
2.2. Land-Cover Classes and Invasive Alien Plant Species
2.3. Datasets
2.4. Training Data
2.5. Classification
2.6. Supervised Classification
Accuracy Assessment of CDA, Worldview 2 and SPOT 6 Classification
3. Results
3.1. Extraction of Training Samples from the Colour Digital Aerial Imagery
3.2. Extraction of Training Samples Digital Globe Worldview 2 Imagery
3.3. Extraction of Training Samples SPOT 6 Imagery
3.4. Species-Level Extraction of Training Samples from SPOT 6 Imagery
4. Discussion
- Rather than just receiving letters of support, end users and other important stakeholders should be involved in the experimental design from the start;
- The researcher selected and visited practitioners in the study region at prospective field sites for data collection;
- Including stakeholders in fieldwork, learning from their experience, and instilling a feeling of ownership in the project increased the likelihood of final product identification and adoption.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clusella-Trullas, S.; Garcia, R.A. Impacts of invasive plants on animal diversity in South Africa: A synthesis. Bothalia-Afr. Biodivers. Conserv. 2017, 47, 1–12. [Google Scholar] [CrossRef]
- Asner, G.P. Tropical forest carbon assessment: Integrating satellite and airborne mapping approaches. Environ. Res. Lett. 2009, 4, 034009. [Google Scholar] [CrossRef]
- Issa, S.; Saleous, N. Modeling the Environment with Remote Sensing and GIS: Applied Case Studies from Diverse Locations of the United Arab Emirates (UAE). In Geographic Information Systems and Science; IntechOpen: London, UK, 2018; p. 81. [Google Scholar]
- Melesse, A.M.; Weng, Q.; Thenkabail, P.S.; Senay, G.B. Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling. Sensors 2007, 7, 3209–3241. [Google Scholar] [CrossRef]
- Beccari, E.; Carmona, C.P.; Tordoni, E.; Petruzzellis, F.; Martinucci, D.; Casagrande, G.; Pavanetto, N.; Rocchini, D.; D’Antraccoli, M.; Ciccarelli, D.; et al. Plant spectral diversity from high-resolution multispectral imagery detects functional diversity patterns in coastal dune communities. bioRxiv 2023. [Google Scholar] [CrossRef]
- Pinto-Ledezma, J.N.; Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 2021, 11, 16448. [Google Scholar] [CrossRef]
- Cord, A.F.; Meentemeyer, R.; Leitão, P.J.; Vaclavik, T. Modelling species distributions with remote sensing data: Bridging disciplinary perspectives. J. Biogeogr. 2013, 40, 2226–2227. [Google Scholar] [CrossRef]
- Leitão, P.J.; Santos, M.J. Improving Models of Species Ecological Niches: A Remote Sensing Overview. Front. Ecol. Evol. 2019, 7, 9. [Google Scholar] [CrossRef]
- Pinto-Ledezma, J.N.; Cavender-Bares, J. Using Remote Sensing for Modeling and Monitoring Species Distributions. In Remote Sensing of Plant Biodiversity; Springer: Cham, Switzerland, 2020; pp. 199–223. [Google Scholar] [CrossRef]
- Serbin, S.P.; Townsend, P.A. Scaling Functional Traits from Leaves to Canopies. In Remote Sensing of Plant Biodiversity; Springer: Cham, Switzerland, 2020; pp. 43–82. [Google Scholar] [CrossRef]
- Bolch, E.A.; Santos, M.J.; Ade, C.; Khanna, S.; Basinger, N.T.; Reader, M.O.; Hestir, E.L. Remote Detection of Invasive Alien Species. In Remote Sensing of Plant Biodiversity; Springer: Cham, Switzerland, 2020; pp. 267–307. [Google Scholar] [CrossRef]
- Everitt, J.H.; Anderson, G.L.; Escobar, D.E.; Davis, M.R.; Spencer, N.R.; Andrascik, R.J. Use of Remote Sensing for Detecting and Mapping Leafy Spurge (Euphorbia esula). Weed Technol. 1995, 9, 599–609. [Google Scholar] [CrossRef]
- Crossman, N.; Kochergen, J. Mapping environmental weeds in the Mount Lofty Ranges, South Australia, using high resoultion infrared aerial photography. In Proceedings of the 13th Australian Weed Conference, Mitcham, Australia, 8–13 September 2002. [Google Scholar]
- Stow, D.; Hope, A.; Richardson, D.; Chen, D.; Garrison, C.; Service, D. Potential of colour-infrared digital camera imagery for inventory and mapping of alien plant invasions in South African shrublands. Int. J. Remote Sens. 2000, 21, 2965–2970. [Google Scholar] [CrossRef]
- Lausch, A.; Heurich, M.; Magdon, P.; Rocchini, D.; Schulz, K.; Bumberger, J.; King, D.J. A Range of Earth Observation Techniques for Assessing Plant Diversity. In Remote Sensing of Plant Biodiversity; Springer: Cham, Switzerland, 2020; pp. 309–348. [Google Scholar] [CrossRef]
- Thenkabail, P.S. Characterization of the alternative to slash-and-burn benchmark research area representing the Congolese rainforests of Africa using near-real-time SPOT HRV data. Int. J. Remote Sens. 1999, 20, 839–877. [Google Scholar] [CrossRef]
- Joshi, C.; De Leeuw, J.; van Andel, J.; Skidmore, A.K.; Lekhak, H.D.; van Duren, I.C.; Norbu, N. Indirect remote sensing of a cryptic forest understorey invasive species. For. Ecol. Manag. 2006, 225, 245–256. [Google Scholar] [CrossRef]
- Holmes, P.M.; Richardson, D.M.; Esler, K.J.; Witkowski, E.T.; Fourie, S. A decision-making framework for restoring riparian zones degraded by invasive alien plants in South Africa. South Afr. J. Sci. 2005, 101, 553–564. [Google Scholar]
- Rowlinson, L.C.; Summerton, M.; Ahmed, F. Comparison of remote sensing data sources and techniques for identifying and classifying alien invasive vegetation in riparian zones. Water SA 1999, 25, 497–500. [Google Scholar]
- Underwood, E.C.; Ustin, S.L.; Ramirez, C.M. A spatial and spectral image resolution comparison for mapping invasive plants in coastal California. Environ. Manag. 2007, 39, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Hamuda, E.; Glavin, M.; Jones, E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Hunt, E.R.; Hively, W.D.; Mccarty, G.W.; Daughtry, C.S.T.; Forrestal, P.J.; Kratochvil, R.J.; Carr, J.L.; Allen, N.F.; Fox-Rabinovitz, J.R.; Miller, C.D. NIR-Green-Blue High-Resolution Digital Images for Assessment of Winter Cover Crop Biomass. GIScience Remote Sens. 2011, 48, 86–98. [Google Scholar] [CrossRef]
- Alavipanah, S.; Matinfar, H.; Emam, A.R.; Khodaei, K.; Bagheri, R.H.; Panah, A.Y. Criteria of selecting satellite data for studying land resources. Desert 2010, 15, 83–102. [Google Scholar] [CrossRef]
- Zurell, D.; Franklin, J.; König, C.; Bouchet, P.J.; Dormann, C.F.; Elith, J.; Fandos, G.; Feng, X.; Guillera-Arroita, G.; Guisan, A.; et al. A standard protocol for reporting species distribution models. Ecography 2020, 43, 1261–1277. [Google Scholar] [CrossRef]
- Keith, B.D.A. Sampling designs, field techniques and analytical methods for systematic plant population surveys. Ecol. Manag. Restor. 2000, 1, 125–139. [Google Scholar] [CrossRef]
- Srivastava, V.; Lafond, V.; Griess, V.C. Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CABI Rev. 2019, 14, 1–13. [Google Scholar] [CrossRef]
- He, K.S.; Bradley, B.A.; Cord, A.F.; Rocchini, D.; Tuanmu, M.-N.; Schmidtlein, S.; Turner, W.; Wegmann, M.; Pettorelli, N. Will remote sensing shape the next generation of species distribution models? Remote Sens. Ecol. Conserv. 2015, 1, 4–18. [Google Scholar] [CrossRef]
- Rocchini, D.; Andreo, V.; Förster, M.; Garzon-Lopez, C.X.; Gutierrez, A.P.; Gillespie, T.W.; Hauffe, H.C.; He, K.S.; Kleinschmit, B.; Mairota, P.; et al. Potential of remote sensing to predict species invasions: A modelling perspective. Prog. Phys. Geogr. 2015, 39, 283–309. [Google Scholar] [CrossRef]
- Truong, T.T.A.; Hardy, G.E.S.J.; Andrew, M.E. Contemporary Remotely Sensed Data Products Refine Invasive Plants Risk Mapping in Data Poor Regions. Front. Plant Sci. 2017, 8, 770. [Google Scholar] [CrossRef] [PubMed]
- Dormann, C.F.; Schymanski, S.J.; Cabral, J.; Chuine, I.; Graham, C.; Hartig, F.; Kearney, M.; Morin, X.; Römermann, C.; Schröder, B.; et al. Correlation and process in species distribution models: Bridging a dichotomy. J. Biogeogr. 2012, 39, 2119–2131. [Google Scholar] [CrossRef]
- Kearney, M. Habitat, environment and niche: What are we modelling? Oikos 2006, 115, 186–191. [Google Scholar] [CrossRef]
- Kumar Rai, P.; Singh, J. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef]
- Roger, E.; Duursma, D.E.; Downey, P.O.; Gallagher, R.V.; Hughes, L.; Steel, J.; Johnson, S.B.; Leishman, M.R. A tool to assess potential for alien plant establishment and expansion under climate change. J. Environ. Manag. 2015, 159, 121–127. [Google Scholar] [CrossRef]
- Divíšek, J.; Chytrý, M.; Beckage, B.; Gotelli, N.J.; Lososová, Z.; Pyšek, P.; Richardson, D.M.; Molofsky, J. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 2018, 9, 4631. [Google Scholar] [CrossRef]
- Joshi, C.; De Leeuw, J.; Van Duren, I. Remote sensing and GIS applications for mapping and spatial modeling of invasive species. ISPRS 2004, 35, B7. [Google Scholar]
- Rouget, M.; Richardson, D.M.; Nel, J.L.; Le Maitre, D.C.; Egoh, B.; Mgidi, T. Mapping the potential ranges of major plant invaders in South Africa, Lesotho and Swaziland using climatic suitability. Divers. Distrib. 2004, 10, 475–484. [Google Scholar] [CrossRef]
- Schnase, J.L.; Carroll, M.L. Automatic variable selection in ecological niche modeling: A case study using Cassin’s Sparrow (Peucaea cassinii). PLoS ONE 2022, 17, e0257502. [Google Scholar] [CrossRef] [PubMed]
- Crowley, M.A.; Cardille, J.A. Remote Sensing’s Recent and Future Contributions to Landscape Ecology. Curr. Landsc. Ecol. Rep. 2020, 5, 45–57. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Wallington, T.J.; Hobbs, R.J.; Moore, S.A. Implications of Current Ecological Thinking for Biodiversity Conservation: A Review of the Salient Issues. Ecol. Soc. 2005, 10, 15. [Google Scholar] [CrossRef]
- Royle, J.A.; Chandler, R.B.; Yackulic, C.; Nichols, J.D. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol. Evol. 2012, 3, 545–554. [Google Scholar] [CrossRef]
- Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: A review of impact on major crops. Food Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Raes, N.; Aguirre-Gutiérrez, J.; Hoorn, C.; Perrigo, A.; Antonelli, A. Modeling framework to estimate and project species distributions space and time. In Mountains, Climate and Biodiversity; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 309–320. [Google Scholar]
- Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 2003, 18, 306–314. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, A.; Welsh, W. Mapping Wetlands and Phragmites Using Publically Available Remotely Sensed Images. Photogramm. Eng. Remote Sens. 2015, 81, 69–78. [Google Scholar] [CrossRef]
- Underwood, E.C.; Mulitsch, M.J.; Greenberg, J.; Whiting, M.L.; Ustin, S.; Kefauver, S. Mapping Invasive Aquatic Vegetation in the Sacramento-San Joaquin Delta using Hyperspectral Imagery. Environ. Monit. Assess. 2006, 121, 47–64. [Google Scholar] [CrossRef]
- Kruger, A.C.; Shongwe, S. Temperature trends in sou fricaica: 1960–2003. Int. J. Climatol. A J. R. Meteorol. Soc. 2004, 24, 1929–1945. [Google Scholar] [CrossRef]
- Mpandeli, S. Managing Climate Risks Using Seasonal Climate Forecast Information in Vhembe District in Limpopo Province, South Africa. J. Sustain. Dev. 2014, 7, 68. [Google Scholar] [CrossRef]
- Van Wyk, A.E.; Smith, G.F. Regions of Floristic Endemism in Southern Africa: A Review with Emphasis on Succulents; Umdaus Press: Hartfield, South Africa, 2001. [Google Scholar]
- Holden, P.B.; Rebelo, A.J.; New, M.G. Mapping invasive alien trees in water towers: A combined approach using satellite data fusion, drone technology and expert engagement. Remote Sens. Appl. Soc. Environ. 2020, 21, 100448. [Google Scholar] [CrossRef]
- Desmet, P.G.; Holness, S.; Skowno, A.; Egan, V.T. Limpopo Conservation Plan v.2: Technical Report. Contract Number EDET/2216/2012. Report for Limpopo Department of Economic Development, Environment & Tourism (LEDET) by ECOSOL GIS. 2013. Available online: https://conservationcorridor.org/cpb/Desmet_et_al_2013.pdf (accessed on 15 March 2023).
- Kuching, S. The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis. J. Comput. Sci. 2007, 3, 419–423. [Google Scholar]
- De Carvalho, O.A.; Meneses, P.R. Spectral correlation mapper (SCM): An improvement on the spectral angle mapper (SAM). In Proceedings of the Summaries of the 9th JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 23–25 February 2000; JPL Publication: Pasadena, CA, USA, 2000; Volume 9, p. 2. [Google Scholar]
- Exelis Visual Information Solutions. ENVI Pocket Guide Volume 1, 2 & 3. Boulder, Colorado: Exelis Visual Information Solutions. Pages Used. 2013. Available online: https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1857492 (accessed on 15 March 2023).
- Sparrow, B.D.; Edwards, W.; Munroe, S.; Wardle, G.M.; Guerin, G.R.; Bastin, J.; Morris, B.; Christensen, R.; Phinn, S.; Lowe, A.J. Effective ecosystem monitoring requires a multi-scaled approach. Biol. Rev. 2020, 95, 1706–1719. [Google Scholar] [CrossRef]
Sensor | Scene | Date of Acquisition | Resolution (m) | Spectral Bands |
---|---|---|---|---|
CDM aerial photographs | 2329BB | 2018-07-16 | 0.25 | Blue, Green, Red |
SPOT 6 | SPOT6_20181102_ 13303316qth9tssm80h_2 | 2018-11-02 | 8 m | Blue (0.455 µm–0.525 µm) |
2018-11-02 | 8 m | Green (0.530 µm–0.590 µm) | ||
2018-11-02 | 8 m | Red (0.625 µm–0.695 µm) | ||
2018-11-02 | 8 m | Near-Infrared (0.760 µm–0.890 µm) | ||
Worldview 2 | 012969746010_01_003 | 2017-05-12 | 1.8 m | Coastal: 400–450 nm |
012969746010_01_003 | 2017-05-12 | 1.8 m | Blue: 450–510 nm | |
012969746010_01_003 | 2017-05-12 | 1.8 m | Green: 510–580 nm | |
012969746010_01_003 | 2017-05-12 | 1.8 m | Yellow: 585–625 nm | |
012969746010_01_003 | 2017-05-12 | 1.8 m | Red: 630–690 nm | |
012969746010_01_003 | 2017-05-12 | 1.8 m | Red Edge: 705–745 nm | |
012969746010_01_003 | 2017-05-12 | 1.8 m | Near-IR1: 770–895 nm | |
012969746010_01_003 | 2017-05-12 | 1.8 m | Near-IR2: 860–1040 nm |
WV-NGI | SPT-NGI | WV-SPT | |
---|---|---|---|
Q | 3.200 | 2.250 | 0.500 |
z (Observed value) | 1.789 | 1.500 | 0.707 |
|z| (Critical value) | 1.960 | 1.960 | 1.960 |
p-value (Two-tailed) | 0.074 | 0.134 | 0.480 |
alpha | 0.05 | 0.05 | 0.05 |
Classification | Overall Accuracy (Percent) | Kappa Coefficient | User Accuracy (Percent) | Producer Accuracy (Percent) |
---|---|---|---|---|
NGI-CDA | 88 | 0.8571 | 100 | 94 |
DigitalGlobe-Worldview 2 | 88 | 0.8571 | 100 | 94 |
CNES-SPOT 6 | 89 | 0.875 | 100 | 94 |
Species Level CNES-SPOT 6 | 89 | 0.857 | 87 | 86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dondofema, F.; Nethengwe, N.; Taylor, P.; Ramoelo, A. Comparison of Satellite Platform for Mapping the Distribution of Mauritius Thorn (Caesalpinia decapetala) and River Red Gum (Eucalyptus camaldulensis) in the Vhembe Biosphere Reserve. Remote Sens. 2023, 15, 2753. https://doi.org/10.3390/rs15112753
Dondofema F, Nethengwe N, Taylor P, Ramoelo A. Comparison of Satellite Platform for Mapping the Distribution of Mauritius Thorn (Caesalpinia decapetala) and River Red Gum (Eucalyptus camaldulensis) in the Vhembe Biosphere Reserve. Remote Sensing. 2023; 15(11):2753. https://doi.org/10.3390/rs15112753
Chicago/Turabian StyleDondofema, Farai, Nthaduleni Nethengwe, Peter Taylor, and Abel Ramoelo. 2023. "Comparison of Satellite Platform for Mapping the Distribution of Mauritius Thorn (Caesalpinia decapetala) and River Red Gum (Eucalyptus camaldulensis) in the Vhembe Biosphere Reserve" Remote Sensing 15, no. 11: 2753. https://doi.org/10.3390/rs15112753
APA StyleDondofema, F., Nethengwe, N., Taylor, P., & Ramoelo, A. (2023). Comparison of Satellite Platform for Mapping the Distribution of Mauritius Thorn (Caesalpinia decapetala) and River Red Gum (Eucalyptus camaldulensis) in the Vhembe Biosphere Reserve. Remote Sensing, 15(11), 2753. https://doi.org/10.3390/rs15112753