Comparison of Forest Restorations with Different Burning Severities Using Various Restoration Methods at Tuqiang Forestry Bureau of Greater Hinggan Mountains
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Sources
2.3. Calculation Method
2.3.1. Burn Severity Mapping
2.3.2. NDVI Calculation
2.3.3. DI Calculation
2.3.4. NDVI and DI Time Series Analysis
3. Results
3.1. Comparison of Forest Remote Sensing Index with Different Burn Severities
3.2. Comparison of Forest Remote Sensing Index with Different Restoration Methods
3.3. Comparison of 2020 Forest Inventory Parameters of Different Burn Severities and Restoration Methods
4. Discussion
4.1. Difference in Response of NDVI and DI to Different Burn Severities
4.2. Difference in Response of NDVI and DI to Different Restoration Methods
4.3. Difference in Restoration Effect of Various Burn Severities and Restoration Methods
4.4. Mechanism of NDVI and DI Indicating the Differences in Reforestation Activities
4.5. Limitations and Caveats
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Healey, S.P.; Cohen, W.B.; Zhiqiang, Y.; Krankina, O.N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Chen, W.; Moriya, K.; Sakai, T.; Koyama, L.; Cao, C. Monitoring of post-fire forest recovery under different restoration modes based on time series Landsat data. Eur. J. Remote Sens. 2014, 47, 153–168. [Google Scholar] [CrossRef]
- Walker, X.J.; Baltzer, J.L.; Cumming, S.G.; Day, N.J.; Ebert, C.; Goetz, S.; Johnstone, J.F.; Potter, S.; Rogers, B.M.; Schuur, E.A.G.; et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 2019, 572, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.; Chipman, M.L.; Higuera, P.E.; Stefanova, I.; Brubaker, L.B.; Hu, F.S. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl. Acad. Sci. USA 2013, 110, 13055–13060. [Google Scholar] [CrossRef] [PubMed]
- Stocks, B.J.; Fosberg, M.A.; Lynham, T.J.; Mearns, L.; Wotton, B.M.; Yang, Q.; Jin, J.Z.; Lawrence, K.; Hartley, G.R.; Mason, J.A.; et al. Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests. Clim. Chang. 1998, 38, 1–13. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef]
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Seiler, W.; Crutzen, P.J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Chang. 1980, 2, 207–247. [Google Scholar] [CrossRef]
- Goward, S.N.; Masek, J.G.; Cohen, W.; Moisen, G.; Collatz, G.J.; Healey, S.; Houghton, R.A.; Huang, C.; Kennedy, R.; Law, B. Forest Disturbance and North American Carbon Flux. Eos Trans. Am. Geophys. Union 2008, 89, 105–116. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- Malhi, Y.; Phillips, O.L.; Lloyd, J.; Baker, T.; Wright, J.; Almeida, S.; Arroyo, L.; Frederiksen, T.; Grace, J.; Higuchi, N. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 2002, 13, 439–450. [Google Scholar] [CrossRef]
- Loveland, T.R.; Merchant, J.W.; Ohlen, D.O.; Brown, J.F. Development of a land-cover characteristics database for the conterminous U.S. Photogramm. Eng. Remote Sens. 1991, 57, 1453–1463. [Google Scholar]
- Li, L.; Shen, R.; Li, X.; Guo, J. Comparison of Forest Disturbance Indices based on MODIS Time-Series Data. Remote Sens. Technol. Appl. 2016, 31, 1083–1090. [Google Scholar]
- Li, R.R.; Kaufman, Y.J.; Wei, M.H.; Salmon, J.M.; Gao, B.C. A technique for detecting burn scars using MODIS data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1300–1308. [Google Scholar]
- Wu, L.; Shen, R.; Li, X.; Yang, H. Evaluating Different Remote Sensing Indexes for Forest Burn Scars Extraction. Remote Sens. Technol. Appl. 2014, 29, 567–574. [Google Scholar]
- Röder, A.; Joachim, H.; Beatriz, D.; Antonio, A.J.; Ramon, V. Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora region (eastern Spain). Remote Sens. Environ. 2008, 112, 259–273. [Google Scholar] [CrossRef]
- Yang, C.; Shen, R.; Yu, D.; Liu, R.; Chen, J. Forest disturbance monitoring based on the time-series trajectory of remote sensing index. J. Remote Sens. 2013, 17, 1246–1263. [Google Scholar]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Jin, S.; Sader, S.A. Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sens. Environ. 2005, 94, 364–372. [Google Scholar] [CrossRef]
- Sellers, P.J.; Berry, J.A.; Collatz, G.J.; Field, C.B.; Hall, F.G. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ. 1992, 42, 187–216. [Google Scholar] [CrossRef]
- Jin, S.; Sader, S.A. MODIS time-series imagery for forest disturbance detection and quantification of patch size effects. Remote Sens. Environ. 2005, 99, 462–470. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Turner, D.P.; Cohen, W.B.; Kennedy, R.E.; Fassnacht, K.S.; Briggs, J.M. Relationships between Leaf Area Index and Landsat TM Spectral Vegetation Indices across Three Temperate Zone Sites. Remote Sens. Environ. 1999, 70, 52–68. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment: Ground measure of severity, the Composite Burn Index; and Remote sensing of severity, the Normalized Burn Ratio. In FIREMON: Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006; LA 1–51. [Google Scholar]
- García, M.J.L.; Caselles, V. Mapping burns and natural reforestation using thematic Mapper data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- DeRose, R.J.; Long, J.N.; Ramsey, R.D. Combining dendrochronological data and the disturbance index to assess Engelmann spruce mortality caused by a spruce beetle outbreak in southern Utah, USA. Remote Sens. Environ. 2011, 115, 2342–2349. [Google Scholar] [CrossRef]
- Masek, J.G.; Huang, C.; Wolfe, R.; Cohen, W.; Hall, F.; Kutler, J.; Nelson, P. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 2008, 112, 2914–2926. [Google Scholar] [CrossRef]
- Coops, N.C.; Wulder, M.A.; Iwanicka, D. Large area monitoring with a MODIS-based Disturbance Index (DI) sensitive to annual and seasonal variations. Remote Sens. Environ. 2009, 113, 1250–1261. [Google Scholar] [CrossRef]
- DaSilva, M.D.; Bruce, D.; Hesp, P.A.; Miot da Silva, G. A New Application of the Disturbance Index for Fire Severity in Coastal Dunes. Remote Sens. 2021, 13, 4739. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese l and carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef]
- Hicke, J.A.; Asner, G.P.; Kasischke, E.S.; French, N.H.F.; Randerson, J.T.; James Collatz, G.; Stocks, B.J.; Tucker, C.J.; Los, S.O.; Field, C.B. Postfire response of North American boreal forest net primary productivity analyzed with satellite observations. Glob. Chang. Biol. 2003, 9, 1145–1157. [Google Scholar] [CrossRef]
- Bunn, A.G.; Goetz, S.J.; Fiske, G.J. Observed and predicted responses of plant growth to climate across Canada. Geophys. Res. Lett. 2005, 32, L16710. [Google Scholar] [CrossRef]
- Goetz, S.J.; Bunn, A.G.; Fiske, G.J.; Houghton, R.A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA 2005, 102, 13521–13525. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Hu, Y.; Chang, Y.; Liu, M.; Li, Y.; Ren, B.; Shi, S. Effects of Fire Severity and Topography on Soil Black Carbon Accumulation in Boreal Forest of Northeast China. Forests 2018, 9, 408. [Google Scholar] [CrossRef]
- Huang, H.L.; Cao, Y.; Chen, G.; Xu, L.; Dang, Y.; Singh, R.P.; Bashir, B.; Xie, B.; Lin, X. Remote Sensing Monitoring of Vegetation Dynamic Changes after Fire in the Greater Hinggan Mountain Area: The Algorithm and Application for Eliminating Phenological Impacts. Remote Sens. 2020, 12, 156. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Xu, M. Remote-Sensing Monitoring of Postfire Vegetation Dynamics in the Greater Hinggan Mountain Range Based on Long Time-Series Data: Analysis of the Effects of Six Topographic and Climatic Factors. Remote Sens. 2022, 14, 2958. [Google Scholar] [CrossRef]
- Xie, F.J.; Xiao, D.N.; Li, X.Z.; Wang, X.G.; Dong, S.B. Factorial analysis on forest canopy density restoration in the burned area of northern Great Xing’an Mountains, China. J. For. Res. 2005, 16, 125–131. [Google Scholar]
- Yu, C.; Chen, L.; Li, S.; Tao, J.H.; Su, L. Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite. Spectrosc. Spectr. Anal. 2015, 35, 739–745. [Google Scholar]
- Huang, C.; Song, K.; Kim, S.; Townshend, J.R.G.; Davis, P.; Masek, J.G.; Goward, S.N. Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sens. Environ. 2008, 112, 970–985. [Google Scholar] [CrossRef]
- Crist, E.P. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Qian, D.; Zhang, H.; He, L. Vegetation changes in conflagration area: Case study of Da Hinggan Mountains and Yellowstone National Park burned area. J. Tianjin Norm. Univ. 2019, 39, 60–68. [Google Scholar]
- Verma, S.; Jayakumar, S. Impact of forest fire on physical, chemical and biological properties of soil: A review. Proc. Int. Acad. Ecol. Environ. Sci. 2012, 2, 168–176. [Google Scholar]
- Zhao, F.; Wang, L.; Chen, P.; Shu, L. Review on the Recovery after the Catastrophic Forest Fire in Daxing’anling Mountains. Forest Resources Management 2013, 0, 125–129. [Google Scholar]
- Yang, Y.; Zhang, X.; Xiao, L.; Yang, Y.; Wang, K.; Du, H.; Zhang, J.; Wang, W. Effect of Forest-fire Rehabilitation Time on Plant Diversity in Daxing’an Mountains, Northeastern China. Bull. Bot. Res. 2019, 39, 514–520. [Google Scholar]
- Goetz, S.J.; Fiske, G.J.; Bunn, A.G. Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sens. Environ. 2006, 101, 352–365. [Google Scholar] [CrossRef]
- Cohen, W.B.; Goward, S.N. Landsat’s Role in Ecological Applications of Remote Sensing. BioScience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Ahern, F.J. Forestry information content of Thematic Mapper data. Int. J. Remote Sens. 1986, 7, 405–428. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sens. Environ. 2011, 115, 1665–1679. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Kong, F.; Li, Y.; Shi, B.; Gao, Z. Model of vegetation restoration under natural regeneration and human interference in the burned area of northern Daxinganling. Chin. J. Ecol. 2003, 22, 30–34. [Google Scholar]
- Turner, M.G.; Romme, W.H.; Gardner, R.H.; Hargrove, W.W. Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol. Monogr. 1997, 67, 411–433. [Google Scholar] [CrossRef]
- Reyes, O.; Casal, M. Regeneration models and plant regenerative types related to the intensity of fire in Atlantic shrubland and woodland species. J. Veg. Sci. 2008, 19, 575–583. [Google Scholar] [CrossRef]
- Konsam, B.; Phartyal, S.S.; Todaria, N.P. Impact of forest fire on soil seed bank composition in Himalayan Chir pine forest. J. Plant Ecol. 2019, 13, 177–184. [Google Scholar] [CrossRef]
- Daibes, L.F.; Zupo, T.; Silveira, F.; Fidelis, A. A field perspective on effects of fire and temperature fluctuation on Cerrado legume seeds. Seed Sci. Res. 2017, 27, 74–83. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, X.; Jin, Y. Gradient analysis of the influence of mountain topography on vegetation pattern. Acta Phytoecol. Sin. 2000, 24, 430–435. [Google Scholar]
- Kong, F.; Li, X.; Yin, H.; Wang, X.; Xie, F. Gradient analysis on the influence of terrain on the forest landscape pattern in the burned blanks of the north slope of Mt.Daxing’anling. Acta Ecol. Sin. 2004, 24, 1863–1870. [Google Scholar]
- Blodgett, H.; Hart-Fredeluces, G.; Stanislaw, M. Annual Burning Decreases Seed Density in the Upper Soil Layers of the Seed Bank; Biology Department, Grinnell College: Grinnell, IA, USA, 2012. [Google Scholar]
- Hais, M.; Jonášová, M.; Langhammer, J.; Kučera, T. Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data. Remote Sens. Environ. 2009, 113, 835–845. [Google Scholar] [CrossRef]
- Heilman, J.L.; Boyd, W.E. Soil background effects on the spectral response of a three-component rangeland scene. Remote Sens. Environ. 1986, 19, 127–137. [Google Scholar] [CrossRef]
- Huete, A.R.; Jackson, R.D. Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands. Remote Sens. Environ. 1987, 23, 213–232. [Google Scholar] [CrossRef]
- Todd, S.W.; Hoffer, R.M. Responses of Spectral Indices to Variations in Vegetation Cover and Soil Background. Photogramm. Eng. Remote Sens. 1998, 64, 915–921. [Google Scholar]
- Hoffer, R.M. Biological and Physical Considerations in Applying Computer-aided Analysis Techniques to Sensor Data. In Remote Sensing: The Quantitative Approach; Swain, P.H., Davis, S.M., Eds.; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Huete, A.R.; Jackson, R.D.; Post, D.F. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 1985, 17, 37–53. [Google Scholar] [CrossRef]
- Huete, A.R.; Tucker, C.J. Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery. Int. J. Remote Sens. 1991, 12, 1223–1242. [Google Scholar] [CrossRef]
- Redowan, M.; Kanan, A.H. Potentials and Limitations of NDVI and other Vegetation Indices (VIS) for Monitoring Vegetation Parameters from Remotely Sensed Data. Bangladesh Res. Publ. J. 2012, 7, 291–299. [Google Scholar]
- Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
Year | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date (Day/Month) | 12/6 | 15/6 | 17/6 | 13/6 1 | 16/6 1 | 10/6 | 12/6 | 1/7 | 4/7 | 23/7 | 16/7 2 | 26/6 | 15/7 |
Year | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
Date (Day/Month) | 16/6 | 18/6 | 21/6 | 24/6 | 20/6 1 | 29/6 | 2/7 | 5/7 | 11/7 1 | 24/6 | 27/6 | 23/6 1 | 3/7 |
Burned Severity | Trees Consumed by Fire (%) | Area Ratio (%) | dNBR Threshold |
---|---|---|---|
unburned | No fire | 16 | ≤0.23 |
lightly burned | ≤30 | 22 | 0.23–0.60 |
moderately burned | 30–70 | 15 | 0.60–0.83 |
severely burned | ≥70 | 47 | ≥0.83 |
Type | Parameter | Unburned | Burned | Average | ||
---|---|---|---|---|---|---|
Light Severity | Moderate Severity | Severe Severity | ||||
Natural regeneration | Tree high/m | 13.71 | 12.33 | 9.73 | 9.21 | 10.79 |
Diameter at Breast Height/cm | 13.55 | 11.99 | 8.75 | 7.7 | 9.88 | |
Canopy density | 0.57 | 0.54 | 0.5 | 0.57 | 0.55 | |
Artificial regeneration | Tree high/m | 11.7 | 9.66 | 10.01 | 9.82 | 9.70 |
Diameter at Breast Height/cm | 11.07 | 8.58 | 9.15 | 8.87 | 8.78 | |
Canopy density | 0.61 | 0.53 | 0.55 | 0.58 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Xu, E.; Yi, X.; Guo, Y.; Zhang, K. Comparison of Forest Restorations with Different Burning Severities Using Various Restoration Methods at Tuqiang Forestry Bureau of Greater Hinggan Mountains. Remote Sens. 2023, 15, 2683. https://doi.org/10.3390/rs15102683
Zhao G, Xu E, Yi X, Guo Y, Zhang K. Comparison of Forest Restorations with Different Burning Severities Using Various Restoration Methods at Tuqiang Forestry Bureau of Greater Hinggan Mountains. Remote Sensing. 2023; 15(10):2683. https://doi.org/10.3390/rs15102683
Chicago/Turabian StyleZhao, Guangshuai, Erqi Xu, Xutong Yi, Ye Guo, and Kun Zhang. 2023. "Comparison of Forest Restorations with Different Burning Severities Using Various Restoration Methods at Tuqiang Forestry Bureau of Greater Hinggan Mountains" Remote Sensing 15, no. 10: 2683. https://doi.org/10.3390/rs15102683
APA StyleZhao, G., Xu, E., Yi, X., Guo, Y., & Zhang, K. (2023). Comparison of Forest Restorations with Different Burning Severities Using Various Restoration Methods at Tuqiang Forestry Bureau of Greater Hinggan Mountains. Remote Sensing, 15(10), 2683. https://doi.org/10.3390/rs15102683