On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile Measurements
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. MOST Wind Profile
3.2. Surface-Layer Parameter Retrieval Methods Based Solely on Wind Speed Profiles
3.2.1. The 2D Method
3.2.2. The Hybrid-Wind Method
3.3. Observational Reference Retrievals
- (i)
- Reference Richardson-number-estimated Obukhov length, .—Because high-frequency temperature data from the sonic anemometers were not stored, the Obukhov length was estimated via bulk Richardson number using the methodology proposed by [14]. was computed as described in [5] (Section 3.4, pp. 7–9) and summarised here in Appendix A.
- (ii)
- Reference friction velocity.—The sonic anemometers were installed at 85 m in height, which may well lie above the surface layer. Therefore, two approximate reference friction-velocity values were computed:
- (a)
- The local friction velocity at 85 m via the sonic-anemometer measurements as [7]:
- (b)
- The so-called 1D friction velocity, denoted . The 1D friction velocity was numerically derived by solving Equation (5) for given the Richardson-number-estimated Obukhov length (, refer to Appendix A) and the measured wind-speed at 27 m, which is the lowest height available from the metmast. Accordingly, becomes the only unknown in Equation (5) (hence the one-dimensional (1D) suffix used), which is solved via least-squares optimisation.
3.4. Synthetic Data Generation
3.4.1. Generation of Obukhov Length and Friction Velocity Random Pairs
3.4.2. Generation of Synthetic Wind Profiles
4. Results and Discussion
4.1. On the Generation of Synthetic Wind Profiles
4.1.1. Generated Synthetic Data Outlook
- 1.
- Because MOST inherently assumes that wind speed monotonically increases with height, synthetic noisy wind profiles that did not fulfil this assumption were excluded.
- 2.
4.2. 2D and HW Performances with Reference to Synthetic Data
4.2.1. Sensitivity to Friction Velocity
4.2.2. Sensitivity to the Perturbational Noise Level
4.3. 2D- and HW-Algorithm Performances with Reference to Observational Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1D | One-dimensional |
2D | Two-dimensional |
ABL | Atmospheric boundary layer |
ABLH | ABL height |
DWL | Doppler wind lidar |
FDWL | Floating Doppler wind lidar |
HW | Hybrid Wind |
HWS | Horizontal wind speed |
MOST | Monin–Obukhov similarity theory |
Normalised root-mean-squared error | |
Probability density function | |
RMSE | Root-mean-squared error |
Appendix A. Derivation of Obukhov Length from Richardson Number
Appendix B. Quality Assurance of “Seed” PDF Characteristic Parameters
References
- GWEC. Global Wind Report 2022; Technical Report; Global Wind Energy Council: Brussels, Belgium, 2022. [Google Scholar]
- Hevia-Koch, P.; Jacobsen, H.K. Comparing offshore and onshore wind development considering acceptance costs. Energy Policy 2019, 125, 9–19. [Google Scholar] [CrossRef]
- WindEurope. Offshore Wind in Europe Key Trends and Statistics 2019; Technical Report; WindEurope: Brussels, Belgium, 2020. [Google Scholar]
- Peña, A.; Mann, J.; Angelou, N.; Jacobsen, A. A Motion-Correction Method for Turbulence Estimates from Floating Lidars. Remote Sens. 2022, 14, 6065. [Google Scholar] [CrossRef]
- Araújo da Silva, M.P.; Rocadenbosch, F.; Farré-Guarné, J.; Salcedo-Bosch, A.; González-Marco, D.; Peña, A. Assessing Obukhov Length and Friction Velocity from Floating lidar Observations: A Data Screening and Sensitivity Computation Approach. Remote Sens. 2022, 14, 1394. [Google Scholar] [CrossRef]
- Gutiérrez-Antuñano, M.A.; Tiana-Alsina, J.; Rocadenbosch, F. Performance evaluation of a floating lidar buoy in nearshore conditions. Wind Energy 2017, 20, 1711–1726. [Google Scholar] [CrossRef]
- Stull, R.B. Practical Meteorology: An Algebra-Based Survey of Atmospheric Science; University of British Columbia: Kelowna, BC, USA, 2015. [Google Scholar]
- Holtslag, M.C.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W. Validation of surface layer similarity theory to describe far offshore marine conditions in the Dutch North Sea in scope of wind energy research. J. Wind Eng. Ind. Aerodyn. 2015, 136, 180–191. [Google Scholar] [CrossRef]
- Türk, M.; Emeis, S. The dependence of offshore turbulence intensity on wind speed. J. Wind Eng. Ind. Aerodyn. 2010, 98, 466–471. [Google Scholar] [CrossRef]
- Göçmen, T.; Van der Laan, P.; Réthoré, P.E.; Diaz, A.P.; Larsen, G.C.; Ott, S. Wind turbine wake models developed at the technical university of Denmark: A review. Renew. Sustain. Energy Rev. 2016, 60, 752–769. [Google Scholar] [CrossRef]
- Lopez-Villalobos, C.; Martínez-Alvarado, O.; Rodriguez-Hernandez, O.; Romero-Centeno, R. Analysis of the influence of the wind speed profile on wind power production. Energy Rep. 2022, 8, 8079–8092. [Google Scholar] [CrossRef]
- Gao, Z.; Qian, X.; Wang, T. Spectral partition characteristics of wind turbine load response under different atmospheric stability. Sustain. Energy Technol. Assess. 2021, 47, 101421. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Grachev, A.; Fairall, C. Dependence of the Monin–Obukhov stability parameter on the bulk Richardson number over the ocean. J. Appl. Meteorol. 1997, 36, 406–414. [Google Scholar]
- Basu, S. Hybrid profile–gradient approaches for the estimation of surface fluxes. Bound. Layer Meteorol. 2019, 170, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Berkowicz, R.; Prahm, L.P. Evaluation of the profile method for estimation of surface fluxes of momentum and heat. Atmos. Environ. 1982, 16, 2809–2819. [Google Scholar] [CrossRef]
- Klug, W. Determination of turbulent fluxes of heat and momentum from the wind profile. Q. J. R. Meteorol. Soc. 1967, 93, 101–104. [Google Scholar] [CrossRef]
- Swinbank, W. The exponential wind profile. Q. J. R. Meteorol. Soc. 1964, 90, 119–135. [Google Scholar] [CrossRef]
- Lo, A.K. On the determination of boundary-layer parameters using velocity profile as the sole information. Bound. Layer Meteorol. 1979, 17, 465–484. [Google Scholar] [CrossRef]
- Beljaars, A.C.M.; Holtslag, A.; Van Westrhenen, R. Description of a Software Library for the Calculation of Surface Fluxes; KNMI De Bilt: Utrecht, The Netherlands, 1989. [Google Scholar]
- Gryning, S.E.; Batchvarova, E.; Brümmer, B.; Jørgensen, H.; Larsen, S. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound. Layer Meteorol. 2007, 124, 251–268. [Google Scholar] [CrossRef]
- Jiang, Q.; Sullivan, P.; Wang, S.; Doyle, J.; Vincent, L. Impact of swell on air–sea momentum flux and marine boundary layer under low-wind conditions. J. Atmos. Sci. 2016, 73, 2683–2697. [Google Scholar] [CrossRef]
- Chen, S.; Qiao, F.; Jiang, W.; Guo, J.; Dai, D. Impact of surface waves on wind stress under low to moderate wind conditions. J. Phys. Oceanogr. 2019, 49, 2017–2028. [Google Scholar] [CrossRef]
- Jiang, Q. Influence of swell on marine surface-layer structure. J. Atmos. Sci. 2020, 77, 1865–1885. [Google Scholar] [CrossRef]
- Zhang, S.F. Comments on ‘on the determination of boundary-layer parameters using velocity profile as the sole information’ by LO (1979). Bound. Layer Meteorol. 1981, 21, 127–129. [Google Scholar] [CrossRef]
- Businger, J.A.; Wyngaard, J.C.; Izumi, Y.; Bradley, E.F. Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 1971, 28, 181–189. [Google Scholar] [CrossRef]
- Dyer, A.J. A review of flux-profile relationships. Bound. Layer Meteorol. 1974, 7, 363–372. [Google Scholar] [CrossRef]
- Peña, A.; Hasager, C.B.; Gryning, S.E.; Courtney, M.; Antoniou, I.; Mikkelsen, T. Offshore Wind Profiling Using Light Detection and Ranging Measurements. Wind Energy 2009, 12, 105–124. [Google Scholar] [CrossRef]
- Barthelmie, R. The effects of atmospheric stability on coastal wind climates. Meteorol. Appl. A J. Forecast. Pract. Appl. Train. Tech. Model. 1999, 6, 39–47. [Google Scholar] [CrossRef]
- Högström, U. Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. In Topics in Micrometeorology. A Festschrift for Arch Dyer; Springer: Berlin/Heidelberg, Germany, 1988; pp. 55–78. [Google Scholar]
- Charnock, H. Wind stress on a water surface. Q. J. R. Meteorol. Soc. 1955, 81, 639–640. [Google Scholar] [CrossRef]
- Peña, A.; Gryning, S.E. Charnock’s roughness length model and non-dimensional wind profiles over the sea. Bound. Layer Meteorol. 2008, 128, 191–203. [Google Scholar] [CrossRef]
- Basu, S. A simple recipe for estimating atmospheric stability solely based on surface-layer wind speed profile. Wind Energy 2018, 21, 937–941. [Google Scholar] [CrossRef]
- Devroye, L. Non-Uniform Random Variate Generation; Springer: New York, NY, USA, 2013. [Google Scholar]
- Kretschmer, M.; Schwede, F.; Guzmán, R.F.; Lott, S.; Cheng, P.W. Influence of atmospheric stability on the load spectra of wind turbines at alpha ventus. J. Phys. 2018, 1037, 052009. [Google Scholar] [CrossRef]
- Araújo da Silva, M.P.; Rocadenbosch, F.; Farré-Guarné, J.; Salcedo-Bosch, A.; González-Marco, D.; Peña, A. Floating Lidar Assessment of Atmospheric Stability in the North Sea. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 7313–7316. [Google Scholar]
Category | L Range [m] |
---|---|
Stable (s) | |
Neutral (n) | |
Unstable (u) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo da Silva, M.P.; Salcedo-Bosch, A.; Rocadenbosch, F.; Peña, A. On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile Measurements. Remote Sens. 2023, 15, 2660. https://doi.org/10.3390/rs15102660
Araújo da Silva MP, Salcedo-Bosch A, Rocadenbosch F, Peña A. On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile Measurements. Remote Sensing. 2023; 15(10):2660. https://doi.org/10.3390/rs15102660
Chicago/Turabian StyleAraújo da Silva, Marcos Paulo, Andreu Salcedo-Bosch, Francesc Rocadenbosch, and Alfredo Peña. 2023. "On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile Measurements" Remote Sensing 15, no. 10: 2660. https://doi.org/10.3390/rs15102660
APA StyleAraújo da Silva, M. P., Salcedo-Bosch, A., Rocadenbosch, F., & Peña, A. (2023). On the Retrieval of Surface-Layer Parameters from Lidar Wind-Profile Measurements. Remote Sensing, 15(10), 2660. https://doi.org/10.3390/rs15102660