STA-GAN: A Spatio-Temporal Attention Generative Adversarial Network for Missing Value Imputation in Satellite Data
Abstract
:1. Introduction
- We identified the challenges in satellite data imputation and proposed the STA-GAN model that integrates GAT and GAN to achieve accurate data imputation.
- We developed a new spatio-temporal attention mechanism based on GAT to capture the short-term temporal dependence and dynamic spatial dependence of satellite data in parallel.
- We re-designed the structure of GAN to achieve data imputation by learning the distribution of satellite data with the learned spatio-temporal dependence information.
2. Materials and Methods
2.1. Study Area and Data
2.2. Data Processing
2.3. Methods
2.3.1. Overview
2.3.2. Spatio-Temporal Attention for Dependence Learning
- (a)
- Temporal Attention
- (b)
- Spatial Attention
2.3.3. Generative Adversarial Network for Data Imputation
3. Results
3.1. Experimental Settings
- (1)
- MEAN: achieves data imputation by using the mean values of historical records.
- (2)
- KNN [34]: finds the k nearest neighbors and fills in the missing value with the average of these neighbors.
- (3)
- GRU-D [56]: achieves the missing value imputation by introducing a decay mechanism in the input variable and hidden state to capture missing information.
- (4)
- GAIN [45]: a GAN-based data imputation method that introduces a hinting mechanism in discriminator to distinguish the original data and the generated data.
- (5)
- GAN-2-stage [46]: a data imputation method based on GAN through two-stage training. First, the decay mechanism is introduced into the generator and discriminator to consider time irregularity. Data imputation is then achieved based on the generated matrix from the trained GAN model.
- (6)
- SolarGAN [47]: an imputation method similar to GAN-2-stage that is used for solar data imputation. The difference with GAN-2-stage is that the noise matrix and the data matrix are fused as the inputs of the generator in SolarGAN.
3.2. Hyper-Parameter Selection
3.3. Performance Comparison with Baseline Methods
3.4. Ablation Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martin, S. An Introduction to Ocean Remote Sensing; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- He, X.; Shi, S.; Geng, X.; Xu, L.; Zhang, X. Spatial-temporal attention network for multistep-ahead forecasting of chlorophyll. Appl. Intell. 2021, 51, 4381–4393. [Google Scholar] [CrossRef]
- Lee, M.S.; Park, K.A.; Chae, J.; Park, J.E.; Lee, J.S.; Lee, J.H. Red tide detection using deep learning and high-spatial resolution optical satellite imagery. Int. J. Remote Sens. 2020, 41, 5838–5860. [Google Scholar] [CrossRef]
- Qin, M.; Li, Z.; Du, Z. Red tide time series forecasting by combining ARIMA and deep belief network. Knowl.-Based Syst. 2017, 125, 39–52. [Google Scholar] [CrossRef]
- Zheng, G.; Li, X.; Zhang, R.; Liu, B. Purely satellite data–driven deep learning forecast of complicated tropical instability waves. Sci. Adv. 2020, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Woodring, J.; Petersen, M.; Schmeisser, A.; Patchett, J.; Ahrens, J.; Hagen, H. In Situ Eddy Analysis in a High-Resolution Ocean Climate Model. IEEE Trans. Vis. Comput. Graph. 2016, 22, 857–866. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, P.; Pan, B.; Li, Y.; Zhou, M. A nowcasting model for the prediction of typhoon tracks based on a long short term memory neural network. Acta Oceanolog. Sin. 2018, 37, 8–12. [Google Scholar] [CrossRef]
- Rüttgers, M.; Lee, S.; Jeon, S.; Donghyun, Y. Prediction of a typhoon track using a generative adversarial network and satellite images. Sci. Rep. 2019, 9, 6057. [Google Scholar] [CrossRef] [Green Version]
- Guan, L.; Kawamura, H. SST availabilities of satellite infrared and microwave measurements. J. Oceanogr. 2003, 59, 201–209. [Google Scholar] [CrossRef]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and temporal distribution of clouds observed by MODIS onboard the terra and aqua satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Huang, B.Y.; Liu, C.Y.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The operational sea surface temperature and sea ice snalysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- Kohtaro, H.; Futoki, S. Global daily high-resolution satellite-based foundation sea surface temperature dataset: Development and validation against two definitions of foundation SST. Remote Sens. 2016, 8, 962. [Google Scholar]
- He, R.; Weisberg, R.H.; Zhang, H.; Muller-Karger, F.E.; Helber, R.W. A cloud-free, satellite-derived, sea surface temperature analysis for the West Florida Shelf. Geophys. Res. Lett. 2003, 30, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Beckers, J.; Rixen, M. EOF calculations and data filling from incomplete oceanographic datasets. J. Atmos. Ocean. Technol. 2003, 20, 1839–1856. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. Gap filling of missing data for VIIRS global ocean color products using the DINEOF method. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4464–4476. [Google Scholar] [CrossRef]
- Guo, J.; Lu, J.; Zhang, Y.; Zhou, C.; Zhang, S.; Wang, D.; Lv, X. Variability of chlorophyll-a and secchi disk depth (1997–2019) in the Bohai Sea based on monthly cloud-free satellite data reconstructions. Remote Sens. 2022, 14, 639. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, J.; Ai, B.; Sun, S. Two-Decade variability of sea surface temperature and chlorophyll-a in the Northern South China Sea as revealed by reconstructed cloud-free satellite sata. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9033–9046. [Google Scholar] [CrossRef]
- Li, Y.; Sun, W.; Zhang, J.; Meng, J.; Zhao, Y. Reconstruction of arctic SST data and generation of multi-source satellite fusion products with high temporal and spatial resolutions. Remote Sens. Lett. 2021, 12, 695–703. [Google Scholar] [CrossRef]
- Zhao, X.; Hou, Y.; Qi, P. Interpretation of sea surface wind interannual vector EOFs over the China seas. Chin. J. Oceanol. Limn. 2010, 28, 340–343. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; Barth, A.; Beckers, J.M.; Weisberg, R.H. Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. J. Geophys. Res.-Oceans 2007, 112, 1–11. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Mitra, P.; Ghosh, S.K. Spatial interpolation to predict missing attributes in GIS using semantic kriging. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4771–4780. [Google Scholar] [CrossRef]
- Rossi, R.E.; Dungan, J.L.; Beck, L.R. Kriging in the shadows: Geostatistical interpolation for remote sensing. Remote Sens. Environ. 1994, 49, 32–40. [Google Scholar] [CrossRef]
- Lu, G.; Wong, D. An adaptive inverse-distance weighting spatial interpolation technique. Comput Geotech. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Shen, J.; Cao, J.; Liu, X.; Zhang, C. DMAD: Data-driven measuring of wi-fi access point deployment in urban spaces. ACM Trans. Intell. Syst. Technol. (TIST) 2017, 9, 1–29. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.C.; Bae, D.; Jo, Y.H. Data reconstruction for remotely sensed chlorophyll-a concentration in the Ross Sea using ensemble-based machine learning. Remote Sens. 2020, 12, 1898. [Google Scholar] [CrossRef]
- Chen, S.; Hu, C.; Barnes, B.; Xie, Y.; Lin, G.; Qiu, Z. Improving ocean color data coverage through machine learning. IEEE T Geosci Remote. 2019, 222, 286–302. [Google Scholar] [CrossRef]
- Hu, C.; Feng, L.; Guan, Q. A machine learning approach to estimate surface chlorophyll a concentrations in global oceans from satellite measurements. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4590–4607. [Google Scholar] [CrossRef]
- Mohebzadeh, H.; Mokari, E.; Daggupati, P.; Biswas, A. A machine learning approach for spatiotemporal imputation of MODIS chlorophyll-a. Int. J. Remote Sens. 2021, 42, 7381–7404. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.H.; Kim, H.C.; Kim, B.K.; Bae, D.; Jo, Y.H.; Jo, N.; Lee, S.H. Reconstruction of ocean color data using machine learning techniques in Polar regions: Focusing on Off Cape Hallett, Ross Sea. Remote Sens. 2019, 11, 1366. [Google Scholar] [CrossRef] [Green Version]
- Xing, M.; Yao, F.; Zhang, J.; Meng, X.; Jiang, L.; Bao, Y. Data reconstruction of daily MODIS chlorophyll-a concentration and spatio-temporal variations in the Northwestern Pacific. Sci. Total Environ. 2022, 843, 156981. [Google Scholar] [CrossRef] [PubMed]
- Sunder, S.; Ramsankaran, R.; Ramakrishnan, B. Machine learning techniques for regional scale estimation of high-resolution cloud-free daily sea surface temperatures from MODIS data. Isprs J. Photogramm. 2020, 166, 228–240. [Google Scholar] [CrossRef]
- Poloczek, J.; Treiber, N.; Kramer, O. KNN Regression as Geo-Imputation Method for Spatio-Temporal Wind Data. In Proceedings of the International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, Bilbao, Spain, 25–27 June 2014; Volume 299, pp. 185–193. [Google Scholar]
- Liu, H.; Li, L. Missing Data Imputation in GNSS Monitoring Time Series Using Temporal and Spatial Hankel Matrix Factorization. Remote Sens. 2022, 14, 1500. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Yu, P. Deep learning for spatio-temporal data mining: A survey. IEEE Trans. Knowl. Data Eng. 2020, 34, 3681–3700. [Google Scholar] [CrossRef]
- Jean-Marie, V.; Frederic, J.; Ronan, F.; Baptiste, M.; Ludivine, L.; Christophe, D. Data-Driven interpolation of sea surface suspended concentrations derived from ocean colour remote sensing data. Remote Sens. 2021, 13, 3537. [Google Scholar]
- Pisoni, E.; Pastor, F.; Volta, M. Artificial neural networks to reconstruct incomplete satellite data: Application to the mediterranean sea surface temperature. Nonlinear Process Geophys. 2008, 15, 61–70. [Google Scholar] [CrossRef]
- Jouini, M.; Levy, M.; Crepon, M.; Thiria, S. Reconstruction of satellite chlorophyll images under heavy cloud coverage using a neural classification method. Remote Sens. Environ. 2013, 131, 232–246. [Google Scholar] [CrossRef]
- Barth, A.; Alvera-Azcarate, A.; Licer, M.; Beckers, J.M. DINCAE 1.0: A convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations. Geosci. Model Dev. 2020, 13, 1609–1622. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; He, Y.; Liu, G.; Perrie, W. Application of DINCAE to reconstruct the gaps in chlorophyll-a satellite observations in the South china sea and West philippine sea. Remote Sens. 2020, 12, 4805. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Yoo, C.; Im, J. High-Resolution seamless daily sea surface temperature based on satellite data fusion and machine learning over kuroshio extension. Remote Sens. 2022, 14, 575. [Google Scholar] [CrossRef]
- Kim, J.; Tae, D.; Seok, J. A survey of missing data imputation using generative adversarial networks. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 454–456. [Google Scholar]
- Yoon, J.; Jordon, J.; Schaar, M. GAIN: Missing Data Imputation using Generative Adversarial Nets. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1–10. [Google Scholar]
- Luo, Y.; Cai, X.; Zhang, Y.; Xu, J.; Yuan, X. Multivariate Time Series Imputation with Generative Adversarial Networks. In Proceedings of the Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 1–12. [Google Scholar]
- Zhang, W.; Luo, Y.; Zhang, Y.; Srinivasan, D. SolarGAN: Multivariate solar data imputation using generative adversarial network. IEEE Trans. Sustain. Energy 2020, 12, 743–746. [Google Scholar] [CrossRef]
- Chorowski, J.K.; Bahdanau, D.; Serdyuk, D.; Cho, K.; Bengio, Y. Attention-based models for speech recognition. Adv. Neural Inf. Process. Syst. 2015, 28, 1–9. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. [Google Scholar]
- Xie, J.; Zhang, J.; Yu, J.; Xu, L. An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism. IEEE Geosci. Remote. Sens. Lett. 2019, 17, 740–744. [Google Scholar] [CrossRef]
- Guo, X.; He, J.; Wang, B.; Wu, J. Prediction of Sea Surface Temperature by Combining Interdimensional and Self-Attention with Neural Networks. Remote Sens. 2022, 14, 4737. [Google Scholar] [CrossRef]
- Wang, X.; Xu, L. Unsteady multi-element time series analysis and prediction based on spatial-temporal attention and error forecast fusion. Future Internet 2020, 12, 34. [Google Scholar] [CrossRef] [Green Version]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 214–223. [Google Scholar]
- Wang, S.; Cao, J.; Chen, H.; Peng, H.; Huang, Z. SeqST-GAN: Seq2Seq generative adversarial nets for multi-step urban crowd flow prediction. ACM Trans. Spat. Algorithms Syst. (TSAS) 2020, 6, 1–24. [Google Scholar] [CrossRef]
- Che, Z.; Sanjay, P.; Kyunghyun, C.; David, S.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing Values. arXiv 2016, arXiv:1606.01865. [Google Scholar] [CrossRef]
Missing Rate | Metris | MEAN | KNN | GRU-D | GAIN | GAN-2-Stage | SolarGAN | STA-GAN |
---|---|---|---|---|---|---|---|---|
0.2 | RMSE | 0.9982 | 0.6509 | 0.4225 | 0.8043 | 0.4977 | 0.4051 | 0.3851 |
MAE | 0.8595 | 0.4999 | 0.2731 | 0.6483 | 0.3494 | 0.2743 | 0.2613 | |
0.3 | RMSE | 1.0024 | 0.6567 | 0.4472 | 0.8052 | 0.4998 | 0.4252 | 0.3908 |
MAE | 0.8627 | 0.5032 | 0.2837 | 0.6489 | 0.3526 | 0.2962 | 0.2734 | |
0.4 | RMSE | 0.9964 | 0.6554 | 0.5024 | 0.8067 | 0.5245 | 0.4562 | 0.4037 |
MAE | 0.8592 | 0.5111 | 0.3024 | 0.6536 | 0.3581 | 0.3071 | 0.2784 | |
0.5 | RMSE | 1.0019 | 0.6627 | 0.5352 | 0.8112 | 0.5599 | 0.4682 | 0.4175 |
MAE | 0.8534 | 0.5137 | 0.3225 | 0.6556 | 0.3920 | 0.3261 | 0.2747 | |
0.6 | RMSE | 1.0009 | 0.6669 | 0.5862 | 0.8152 | 0.5779 | 0.4753 | 0.4215 |
MAE | 0.8604 | 0.5217 | 0.3399 | 0.6615 | 0.4234 | 0.3373 | 0.2882 | |
0.7 | RMSE | 0.9990 | 0.6772 | 0.6231 | 0.8193 | 0.6087 | 0.4930 | 0.4464 |
MAE | 0.8597 | 0.5363 | 0.3883 | 0.6712 | 0.4386 | 0.3722 | 0.3047 | |
0.8 | RMSE | 0.9905 | 0.6938 | 0.6455 | 0.8270 | 0.6220 | 0.5245 | 0.4472 |
MAE | 0.8563 | 0.5606 | 0.4396 | 0.6756 | 0.4634 | 0.3868 | 0.3121 | |
0.9 | RMSE | 1.0010 | 0.7402 | 0.6831 | 0.8598 | 0.6554 | 0.5658 | 0.4734 |
MAE | 0.8627 | 0.6013 | 0.5111 | 0.7298 | 0.5035 | 0.4739 | 0.3458 |
Missing Rate | Metris | MEAN | KNN | GRU-D | GAIN | GAN-2-Stage | SolarGAN | STA-GAN |
---|---|---|---|---|---|---|---|---|
0.2 | RMSE | 0.9989 | 0.7799 | 0.5179 | 0.8139 | 0.5960 | 0.5072 | 0.4991 |
MAE | 0.8321 | 0.6032 | 0.3211 | 0.5690 | 0.4227 | 0.3453 | 0.3174 | |
0.3 | RMSE | 1.0012 | 0.7857 | 0.5583 | 0.8150 | 0.6028 | 0.5249 | 0.5096 |
MAE | 0.8316 | 0.6062 | 0.3333 | 0.5677 | 0.4353 | 0.3511 | 0.3274 | |
0.4 | RMSE | 0.9976 | 0.7897 | 0.5737 | 0.8184 | 0.6365 | 0.5377 | 0.5322 |
MAE | 0.8241 | 0.6113 | 0.3573 | 0.5712 | 0.4610 | 0.3935 | 0.3478 | |
0.5 | RMSE | 1.0005 | 0.7952 | 0.6172 | 0.8213 | 0.6626 | 0.5774 | 0.5439 |
MAE | 0.8313 | 0.6170 | 0.3756 | 0.5671 | 0.4655 | 0.4184 | 0.3645 | |
0.6 | RMSE | 1.0002 | 0.8012 | 0.6739 | 0.8252 | 0.6984 | 0.6256 | 0.5342 |
MAE | 0.8227 | 0.6235 | 0.4104 | 0.5687 | 0.5075 | 0.4562 | 0.3727 | |
0.7 | RMSE | 1.0010 | 0.8138 | 0.7155 | 0.8327 | 0.7346 | 0.7541 | 0.5495 |
MAE | 0.8262 | 0.6339 | 0.4550 | 0.5693 | 0.5416 | 0.5187 | 0.3865 | |
0.8 | RMSE | 0.9998 | 0.8279 | 0.7515 | 0.8465 | 0.7436 | 0.8054 | 0.5621 |
MAE | 0.8267 | 0.6500 | 0.5134 | 0.6019 | 0.5748 | 0.6293 | 0.3917 | |
0.9 | RMSE | 0.9972 | 0.8691 | 0.7774 | 0.9036 | 0.8115 | 0.8460 | 0.5852 |
MAE | 0.8246 | 0.6915 | 0.6165 | 0.6689 | 0.6262 | 0.7055 | 0.4055 |
Missing Rate | Metris | MEAN | KNN | GRU-D | GAIN | GAN-2-Stage | SolarGAN | STA-GAN |
---|---|---|---|---|---|---|---|---|
0.2 | RMSE | 0.9944 | 0.9121 | 0.6233 | 0.8755 | 0.6677 | 0.6289 | 0.6162 |
MAE | 0.8130 | 0.7178 | 0.4164 | 0.7321 | 0.4532 | 0.4357 | 0.4167 | |
0.3 | RMSE | 1.0073 | 0.9227 | 0.6426 | 0.8827 | 0.6776 | 0.6321 | 0.6254 |
MAE | 0.8174 | 0.7194 | 0.4224 | 0.7425 | 0.4614 | 0.4536 | 0.4144 | |
0.4 | RMSE | 1.0070 | 0.9238 | 0.6641 | 0.8885 | 0.6857 | 0.6589 | 0.6358 |
MAE | 0.8192 | 0.7253 | 0.4351 | 0.7466 | 0.4835 | 0.4707 | 0.4204 | |
0.5 | RMSE | 1.0106 | 0.9274 | 0.7108 | 0.8987 | 0.6986 | 0.6861 | 0.6366 |
MAE | 0.8250 | 0.7268 | 0.4652 | 0.7550 | 0.5108 | 0.4959 | 0.4246 | |
0.6 | RMSE | 1.0109 | 0.9370 | 0.7469 | 0.8988 | 0.7193 | 0.7016 | 0.6446 |
MAE | 0.8255 | 0.7430 | 0.5106 | 0.7711 | 0.5219 | 0.5004 | 0.4374 | |
0.7 | RMSE | 1.0010 | 0.9401 | 0.7721 | 0.9163 | 0.7676 | 0.7509 | 0.6510 |
MAE | 0.8336 | 0.7487 | 0.5604 | 0.7780 | 0.5658 | 0.5549 | 0.4617 | |
0.8 | RMSE | 0.9987 | 0.9698 | 0.8063 | 0.9448 | 0.7853 | 0.8726 | 0.6913 |
MAE | 0.8825 | 0.7615 | 0.6437 | 0.7969 | 0.5723 | 0.7007 | 0.4770 | |
0.9 | RMSE | 0.9849 | 0.9943 | 0.8684 | 0.9756 | 0.8486 | 0.9495 | 0.7336 |
MAE | 1.0242 | 0.7913 | 0.7383 | 0.8121 | 0.6804 | 0.7957 | 0.5065 |
Model | SST-EAST | SST-SOUTH | CHA-EAST | |||
---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | |
w/o SA | 0.4326 | 0.2869 | 0.5548 | 0.3800 | 0.6461 | 0.4368 |
w/o TA | 0.4245 | 0.2783 | 0.5487 | 0.3719 | 0.6421 | 0.4279 |
STA-GAN | 0.4175 | 0.2747 | 0.5439 | 0.3645 | 0.6366 | 0.4246 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Li, W.; Hou, S.; Guan, J.; Yao, J. STA-GAN: A Spatio-Temporal Attention Generative Adversarial Network for Missing Value Imputation in Satellite Data. Remote Sens. 2023, 15, 88. https://doi.org/10.3390/rs15010088
Wang S, Li W, Hou S, Guan J, Yao J. STA-GAN: A Spatio-Temporal Attention Generative Adversarial Network for Missing Value Imputation in Satellite Data. Remote Sensing. 2023; 15(1):88. https://doi.org/10.3390/rs15010088
Chicago/Turabian StyleWang, Shuyu, Wengen Li, Siyun Hou, Jihong Guan, and Jiamin Yao. 2023. "STA-GAN: A Spatio-Temporal Attention Generative Adversarial Network for Missing Value Imputation in Satellite Data" Remote Sensing 15, no. 1: 88. https://doi.org/10.3390/rs15010088
APA StyleWang, S., Li, W., Hou, S., Guan, J., & Yao, J. (2023). STA-GAN: A Spatio-Temporal Attention Generative Adversarial Network for Missing Value Imputation in Satellite Data. Remote Sensing, 15(1), 88. https://doi.org/10.3390/rs15010088