The Transmission Effect and Influencing Factors of Land Pressure in the Yangtze River Delta Region from 1995–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Modified Gravity Model
2.3.2. Social Network Characteristics
2.3.3. Center of Gravity-GTWR Model
3. Results
3.1. Overall Network Characteristics
3.2. Individual Network Characteristics
3.3. Spatial Clustering Characteristics
3.4. Analysis of the Influencing Forces of Land Pressure in the YRDR
4. Discussion
4.1. Analysis of the Transmission Effects
4.2. Spatial and Temporal Differences in Driving Forces
4.3. Innovations and Limitations
5. Conclusions
- The network density decreased by 5.97%, the network efficiency increased by 6.21%, the network correlation remained constant at 1 and the network efficiency remained constant at 0 from 1995–2020, indicating that the spatial correlation structure of land pressure in the YRDR was relatively stable and showed a balanced development. However, the regional coordination and overall transmission level still need to be improved. It is crucial to consider the prominent bridging functions of Nanjing, Shanghai, Suzhou, Hangzhou and Changzhou when establishing a land pressure transmission mechanism to reduce land pressure from a more comprehensive regional synergy.
- The geographical boundaries were disrupted by the YRDR’s transmission effect of land pressure and there was a tendency for spreading from the core city to the periphery and the characteristic of cascade transmission. The eastern cities of the YRDR absorbed resources from the other cities to meet their own needs. The southern cities relieved the land pressure of the other cities through the overflow of resource elements. The YRDR’s western and northern cities acted as bridges in the spatially linked network of land pressure, facilitating the flow of resource elements and inter-city exchanges and cooperation.
- The coupled gravity-GTWR model’s R2 was 0.96 higher than that of the other regression analysis models, demonstrating the model’s applicability in the study of the influencing factors for land pressure. The land pressure influencing factors in the YRDR had obvious spatial and temporal differences, with various cities showing varying intensities and action directions of the influencing factors.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Dimensions | Index Layer | Weight | Dimensions | Index Layer | Weight |
---|---|---|---|---|---|
Production pressure | Fertilizer application intensity (t·m−2) | 0.0438 | Living pressure | Population density (people·km−2) | 0.0328 |
Pesticide application intensity (t·m−2) | 0.0509 | Natural population growth rate (%) | 0.0255 | ||
The modified cropland pressure index | 0.0959 | Built-up land area (m−2) | 0.0447 | ||
Cropland area (m−2) | 0.0104 | Urbanization level (%) | 0.0321 | ||
Producible land area per capita (people·m−2) | 0.0094 | Water pressure index | 0.0326 | ||
Gross domestic product (104 yuan) | 0.0988 | Population pressure on built-up land (people·km−2) | 0.0463 | ||
Ecology pressure | Carbon sink pressure index | 0.1098 | Slope (°) | 0.1137 | |
Amount of meat (people−1) | 0.0456 | Per capita net income of farmers (yuan) | 0.0441 | ||
Grass area (m−2) | 0.0077 | The ratio of urban and rural per capita disposable income | 0.0277 | ||
Ecological service value (yuan·ha−2) | 0.0104 | Number of beds in health facilities (104 people−1) | 0.0409 | ||
Water area (m−2) | 0.0066 | ||||
Industrial SO2 emissions (t) | 0.0703 |
Variables | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|
X1 | 1.87 | 1.67 | 3.06 | 2.01 | 2.37 | 1.71 |
X2 | 2.32 | 2.29 | 1.97 | 2.88 | 4.01 | 3.80 |
X3 | 1.25 | 1.58 | 1.51 | 2.13 | 2.17 | 2.65 |
X4 | 2.30 | 3.13 | 6.01 | 6.24 | 4.67 | 5.13 |
X5 | 1.85 | 2.22 | 2.97 | 2.44 | 2.29 | 2.66 |
X6 | 2.36 | 4.54 | 2.64 | 2.11 | 1.43 | 1.35 |
X7 | 1.94 | 1.81 | 2.16 | 2.16 | 1.42 | 1.84 |
X8 | 2.95 | 2.55 | 7.20 | 7.44 | 5.70 | 8.69 |
X9 | 2.11 | 2.41 | 1.73 | 2.05 | 1.68 | 1.82 |
X10 | 2.14 | 3.48 | 2.99 | 5.43 | 4.16 | 6.15 |
References
- Lv, H.; Guan, X.; Meng, Y. Study on economic value of urban land resources based on emergy and econometric theories. Environ. Dev. Sustain. 2021, 23, 1019–1042. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, X.; Wu, Y.; Shen, J.; Shen, L.; Xing, X. Urban land expansion and the floating population in China: For production or for living? Cities 2018, 74, 219–228. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Rural land system reforms in China: History, issues, measures and prospects. Land Use Policy 2020, 91, 104330. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Xu, J.; Lin, Z. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef]
- Zhu, H.; He, S. Land pressure and adaptation in the mountainous region of northern China: An empirical analysis of 21 small watersheds. J. Geogr. Sci. 2010, 20, 913–922. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, R.; Ai, D.; Wang, S.; Sun, W. Study on Land Pressure and Its Sustainable Utilization for Heilongjiang Province. Areal Res. Dev. 2017, 36, 123–128. [Google Scholar] [CrossRef]
- Hao, S.; Li, C. Changes of land pressure and land use mode in Loess hilly gully region. Trans. Chin. Soc. Agric. Eng. 2014, 30, 210–217. [Google Scholar] [CrossRef]
- Shen, L.; Cheng, G.; Du, X.; Meng, C.; Ren, Y.; Wang, J. Can urban agglomeration bring “1 + 1 > 2 Effect”? A perspective of land resource carrying capacity. Land Use Policy 2022, 117, 106094. [Google Scholar] [CrossRef]
- Cao, X.; Shi, Y.; Zhou, L. Research on Urban Carrying Capacity Based on Multisource Data Fusion-A Case Study of Shanghai. Remote Sens. 2021, 13, 2695. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G.; Li, J. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [Google Scholar] [CrossRef]
- Wu, C.; Wei, Y.D.; Huang, X.; Chen, B. Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Qiu, F.; Tong, Q.; Zhang, J. Investigating the role of spatial spillovers as determinants of land conversion in urbanizing Canada. Environ. Dev. Econ. 2022, 27, 357–373. [Google Scholar] [CrossRef]
- Tang, Y.; Lu, X.; Yi, J.; Wang, H.; Zhang, X.; Zheng, W. Evaluating the spatial spillover effect of farmland use transition on grain production—An empirical study in Hubei Province, China. Ecol. Indicators. 2021, 125, 107478. [Google Scholar] [CrossRef]
- Ma, S.; Cai, Y.; Xie, D.; Zhang, X.; Zhao, Y. Towards balanced development stage: Regulating the spatial pattern of agglomeration with collaborative optimal allocation of urban land. Cities 2022, 126, 103645. [Google Scholar] [CrossRef]
- Luo, X.; Qin, J.; Cheng, C.; Pan, Y.; Yang, T. Spatial effects and influencing factors of urban land intensive use in the Yangtze River Delta under high-quality development. Front. Environ. Science. 2022, 10, 971466. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, A.; Sun, Z. How regional economic integration influence on urban land use efficiency? A case study of Wuhan metropolitan area, China. Land Use Policy 2020, 90, 104329. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, B.; Wang, J.; Wu, Q.; Wei, Y.D. How does industrial agglomeration affect urban land use efficiency? A spatial analysis of Chinese cities. Land Use Policy. 2022, 119, 106178. [Google Scholar] [CrossRef]
- Xu, J.; Huang, D.; He, Z.; Zhu, Y. Research on the Structural Features and Influential Factors of the Spatial Network of China’s Regional Ecological Efficiency Spillover. Sustainability 2020, 12, 3137. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Ma, X. Spillovers of environmental regulation on carbon emissions network. Technol. Forecast. Soc. Chang. 2021, 169, 120825. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Z.; Yu, X.; Ding, W. Evaluating Sustainable Development of Land Resources in the Yangtze River Economic Belt of China. J. Glob. Inf. Manag. 2022, 30, 1–23. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Y.; Xu, C.; Yang, Y. Towards a Sustainable Grain Production Network: An Empirical Study from Northeast China. Sustainability 2022, 14, 8849. [Google Scholar] [CrossRef]
- Wu, C.; Huang, X.; Chen, B. Telecoupling mechanism of urban land expansion based on transportation accessibility: A case study of transitional Yangtze River economic Belt, China. Land Use Policy 2020, 96, 104687. [Google Scholar] [CrossRef]
- Hu, G.; Mao, D.; Xu, Y.; Feng, C.; Zhang, F. Assessment and Countermeasures of Integrated Land Carrying Capacity of Hunan Province“3 + 5”Urban Agglomeration. J. Nat. Sci. Hunan Norm. Univ. 2012, 35, 90–94. [Google Scholar]
- Zhang, L.; Zheng, X.; Meng, C.; Zhang, P. Spatio-Temporal Difference of Coupling Coordination Degree of Land Use Functions in Hunan Province. China Land Sci. 2019, 33, 85–94. [Google Scholar] [CrossRef]
- Zhou, D.; Lin, Z.; Lim, S.H. Spatial characteristics and risk factor identification for land use spatial conflicts in a rapid urbanization region in China. Environ. Monit. Assess. 2019, 191, 677. [Google Scholar] [CrossRef]
- Xue, Q.; Yang, X.; Wu, F. A three-stage hybrid model for the regional assessment, spatial pattern analysis and source apportionment of the land resources comprehensive supporting capacity in the Yangtze River Delta urban agglomeration. Sci. Total Environ. 2020, 711, 134428. [Google Scholar] [CrossRef]
- Xu, F.; Wang, Z.; Chi, G.; Zhang, Z. The impacts of population and agglomeration development on land use intensity: New evidence behind urbanization in China. Land Use Policy 2020, 95, 104639. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C. Evolution process and obstacle factors of ecological security in western China, a case study of Qinghai province. Ecol. Indic. 2020, 117, 106659. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Ma, X.; Wang, Y.; Yang, G.; Zhu, L. Evaluation of resources and environmental carrying capacity of 36 large cities in China based on a support-pressure coupling mechanism. Sci. Total Environ. 2019, 688, 838–854. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, L.; Yan, J.; Wang, X.; Wang, T. Spatial-Temporal Characteristics and Influencing Factors of Coupled Coordination between Urbanization and Eco-Environment: A Case Study of 13 Urban Agglomerations in China. Sustainability 2020, 12, 8821. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, D.; Li, J.; Liang, J.; Zhang, D.; Chen, W. Original Cultivated land use efficiency and its driving factors in the Yellow River Basin, China. Ecol. Indic. 2022, 144, 109411. [Google Scholar] [CrossRef]
- Huang, Q.; Peng, B.; Wei, G.; Wan, A. Dynamic assessment and early warning of ecological security: A case study of the Yangtze river urban agglomeration. Nat. Hazards 2021, 107, 2441–2461. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, Y. Spatio-Temporal Variation and Driving Forces of Land-Use Change from 1980 to 2020 in Loess Plateau of Northern Shaanxi, China. Land 2021, 10, 982. [Google Scholar] [CrossRef]
- Kattel, G.R.; Elkadi, H.; Meikle, H. Developing a complementary framework for urban ecology. Urban For. Urban Green. 2013, 12, 498–508. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Hou, G. Analysis on the Spatial-Temporal Evolution Characteristics and Spatial Network Structure of Tourism Eco-Efficiency in the Yangtze River Delta Urban Agglomeration. Int. J. Environ. Res. Public Health 2021, 18, 2577. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, L.; Li, L.; Zhang, T.; Yuan, L.; Liu, R.; Wang, Z.; Zang, J.; Shi, S. Spatiotemporal Characterization of the Urban Expansion Patterns in the Yangtze River Delta Region. Remote Sens. 2021, 13, 4484. [Google Scholar] [CrossRef]
- Song, J.; Feng, Q.; Wang, X.; Fu, H.; Jiang, W.; Chen, B. Spatial Association and Effect Evaluation of CO2 Emission in the Chengdu-Chongqing Urban Agglomeration: Quantitative Evidence from Social Network Analysis. Sustainability 2019, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Xiao, Q. An empirical analysis on spatial correlation investigation of industrial carbon emissions using SNA-ICE model. Energy 2021, 224, 120183. [Google Scholar] [CrossRef]
- Huff, D.L. A Note on the Limitations of Intraurban Gravity Models. Land Econ. 1962, 38, 64–66. [Google Scholar] [CrossRef]
- Shen, W.; Liang, H.; Dong, L.; Ren, J.; Wang, G. Synergistic CO2 reduction effects in Chinese urban agglomerations: Perspectives from social network analysis. Sci. Total Environ. 2021, 798, 149352. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wei, Z.; Liu, G.; Zhou, P. Spatial network analysis of carbon emissions from the electricity sector in China. J. Clean. Prod. 2020, 262, 121193. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, L.; Tong, H.; Chen, L.; Zhang, T.; Li, L.; Yuan, L.; Xiao, J.; Wu, R.; Bai, L.; et al. Spatial correlations of land-use carbon emissions in the Yangtze River Delta region: A perspective from social network analysis. Ecol. Indic. 2022, 142, 109147. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.; Liu, Y.; Liu, Y.; Xu, S.; Zhao, Y.; Chen, Y.; Hong, S. Urban expansion patterns and their driving forces based on the center of gravity-GTWR model: A case study of the Beijing-Tianjin-Hebei urban agglomeration. J. Geogr. Sci. 2020, 30, 297–318. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Chen, L.; Zhou, X.; Cui, Y.; Liu, Y.; Liu, W. Mapping and Characterizing Spatiotemporal Dynamics of Impervious Surfaces Using Landsat Images: A Case Study of Xuzhou, East China from 1995 to 2018. Sustainability 2019, 11, 1224. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Huang, B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sens. Environ. 2018, 206, 72–83. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Wu, B.; Li, R.; Huang, B. A geographically and temporally weighted autoregressive model with application to housing prices. Int. J. Geogr. Inf. Sci. 2014, 28, 1186–1204. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Huang, B. Prediction for spatio-temporal models with autoregression in errors. J. Nonparametric Stat. 2012, 24, 217–244. [Google Scholar] [CrossRef]
- Chu, H.; Huang, B.; Lin, C. Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship. Atmos. Environ. 2015, 102, 176–182. [Google Scholar] [CrossRef]
- Li, W.; Cai, Z. Spatiotemporal differences and influencing factors of high-quality utilization of land resources in the Yellow River Basin of China. Environ. Sci. Pollut. Res. 2022, 29, 89438–89448. [Google Scholar] [CrossRef] [PubMed]
- Punzo, G.; Castellano, R.; Bruno, E. Using geographically weighted regressions to explore spatial heterogeneity of land use influencing factors in Campania (Southern Italy). Land Use Policy 2022, 112, 105853. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, S.; Gao, J. Evolution characteristic and influencing mechanism of water-energy-food stress in Yangtze River Delta Urban Agglomeration. J. Nat. Resour. 2022, 37, 1586–1597. [Google Scholar] [CrossRef]
- Kennedy, P. A Guide to Econometrics, 6th ed.; Wiley-Blackwell: Oxford, UK, 2008. [Google Scholar]
- Hair, J.; Black, W.; Babin, B.; Anderson, R. Multivariate Data Analysis, 7th ed.; Pearson: Cambridge, UK, 2009. [Google Scholar]
- Li, L.; Bakelants, L.; Solana, C.; Canters, F.; Kervyn, M. Dating lava flows of tropical volcanoes by means of spatial modeling of vegetation recovery. Earth Surf. Process. Landf. 2018, 43, 840–856. [Google Scholar] [CrossRef]
- Symonds, M.R.E.; Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 2011, 65, 13–21. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Yang, N.; Li, J.; Lu, B.; Luo, M.; Li, L. Exploring the Spatial Pattern and Influencing Factors of Land Carrying Capacity in Wuhan. Sustainability 2019, 11, 2786. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Li, C. Structure characteristics and influencing factors of China’s carbon emission spatial correlation network: A study based on the dimension of urban agglomerations. Sci. Total Environ. 2022, 853, 158613. [Google Scholar] [CrossRef]
- Jiang, Y. The Influence of Yangtze River Economic Belt Strategy on Yangtze River Delta Integration. Shanghai Econ. 2016, 114, 50–73. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.; Huang, S. Does regional integration promote the high quality development of urban agglomeration economy: A quasi—Natural experiment based on the Yangtze river delta urban economic coordination commission. Stud. Sci. Science. 2021, 39, 63–72. [Google Scholar] [CrossRef]
- Zhu, H.; Sun, H. Study on Measurement of Spatio-temporal Change of Cultivated Land Pressure Index in China. Price Theory Practice. 2015, 1, 41–43. [Google Scholar] [CrossRef]
- Lin, Q.; Xiang, M.; Zhang, L.; Yao, J.; Wei, C.; Ye, S.; Shao, H. Research on Urban Spatial Connection and Network Structure of Urban Agglomeration in Yangtze River Delta-Based on the Perspective of Information Flow. Int. J. Environ. Res. Public Health 2021, 18, 10288. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Qiao, Y.; Zhou, Q. Spatiotemporal evolution and spatial relevance of urban resilience: Evidence from cities of China. Growth Chang. 2021, 52, 2364–2390. [Google Scholar] [CrossRef]
- Ding, R.; Fu, J.; Zhang, Y.; Zhang, T.; Yin, J.; Du, Y.; Zhou, T.; Du, L. Research on the Evolution of the Economic Spatial Pattern of Urban Agglomeration and Its Influencing Factors, Evidence from the Chengdu-Chongqing Urban Agglomeration of China. Sustainability 2022, 14, 10969. [Google Scholar] [CrossRef]
- Ma, X.; Zheng, X.; Wang, Y.; Kathia, R.A. Study on the spatial-temporal evolution of cultivated land pressure and its driving factors in central plains economic region. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 58–66. [Google Scholar] [CrossRef]
- Wu, D.; Hu, Y.; Liu, Y.; Liu, Y. Empirical study on the coupling coordination between development intensity and resources-and-environment carrying capacity of core cities in Pearl River Delta. J. Nat. Resour. 2020, 35, 82–94. [Google Scholar] [CrossRef]
- Luo, Z.; Yuan, Y.; Qi, S.; Xu, J. Evaluating the Carrying Capacity and Spatial Pattern Matching of Urban and Rural Construction Land in a Representative City of Middle China. Forests 2022, 13, 1514. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.; Yin, P. Spatial-temporal differentiation and driving factors identification of urban land resources carrying capacity in the Yangtze River Economic Belt. Econ. Geogr. 2022, 42, 185–192. [Google Scholar] [CrossRef]
- Shi, L. Industrial Structure Changes, Spatial Spillover and Economic Growth in the Yangtze River Delta. J. Coast. Res. 2020, 107, 377–382. [Google Scholar] [CrossRef]
- Wen, Y. The spillover effect of FDI and its impact on productivity in high economic output regions: A comparative analysis of the Yangtze River Delta and the Pearl River Delta, China. Pap. Reg. Sci. 2014, 93, 341–365. [Google Scholar] [CrossRef]
City | 1995 | City | 2000 | City | 2005 | City | 2010 | City | 2015 | City | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|
WX-SU | 8271.77 | WX-SU | 11,457.29 | WX-SU | 22,076.94 | SU-WX | 37,191.92 | SU-WX | 49,064.48 | SU-WX | 66,530.36 |
SU-WX | 7848.91 | SU-WX | 10,815.96 | SU-WX | 20,829.12 | WX-SU | 36,521.96 | WX-SU | 47,432.02 | WX-SU | 64,054.35 |
SH-SU | 6554.31 | SH-SU | 9898.14 | SH-SU | 18,092.72 | SH-SU | 29,232.34 | SH-SU | 37,247.64 | SH-SU | 47,871.14 |
SU-SH | 5440.95 | SU-SH | 7838.94 | SU-SH | 14,295.09 | SU-SH | 24,845.38 | SU-SH | 32,779.03 | SU-SH | 45,428.34 |
CA-ZJ | 2958.17 | XZ-SZ | 4208.11 | SH-NT | 6904.63 | CA-ZJ | 11,884.37 | XZ-SZ | 17,684.42 | XZ-SZ | 21,834.24 |
ZJ-CA | 2942.87 | SH-NT | 4203.44 | SH-JX | 6831.47 | XZ-SZ | 11,275.40 | CA-ZJ | 17,192.10 | CA-ZJ | 20,955.38 |
SH-NT | 2858.60 | SH-JX | 4051.79 | CA-ZJ | 6728.25 | WX-CA | 11,135.58 | SZ-XZ | 16,549.96 | SZ-XZ | 20,336.91 |
WX-CA | 2710.67 | CA-ZJ | 4018.40 | WX-CA | 6690.89 | SH-NT | 11,066.87 | ZJ-CA | 15,586.60 | WX-CA | 20,043.53 |
SH-JX | 2691.21 | ZJ-CA | 3835.15 | SH-WX | 6454.53 | ZJ-CA | 10,721.01 | NJ-ZJ | 14,914.10 | SH-NT | 18,949.02 |
SH-WX | 2495.58 | WX-CA | 3720.19 | ZJ-CA | 6263.74 | SH-JX | 10,420.85 | WX-CA | 14,795.19 | CA-WX | 18,945.49 |
Year | Block Type | Relationships Received | Relationships Generated | Expected Internal Relationship | Actual Internal Relationship | ||
---|---|---|---|---|---|---|---|
Inside | Outside | Inside | Outside | ||||
1995 | I | 57 | 126 | 57 | 123 | 25.00% | 31.67% |
II | 72 | 89 | 72 | 126 | 27.50% | 36.36% | |
III | 10 | 130 | 10 | 65 | 15.00% | 13.33% | |
IV | 64 | 89 | 64 | 120 | 25.00% | 34.78% | |
2000 | I | 40 | 78 | 40 | 86 | 17.50% | 31.75% |
II | 92 | 118 | 92 | 136 | 30.00% | 40.35% | |
III | 48 | 129 | 48 | 71 | 17.50 | 40.34% | |
IV | 77 | 100 | 77 | 132 | 27.50% | 36.84% | |
2005 | I | 55 | 92 | 55 | 104 | 22.50% | 34.59% |
II | 68 | 99 | 68 | 114 | 25.00% | 37.36% | |
III | 60 | 143 | 60 | 83 | 20.00% | 41.96% | |
IV | 64 | 85 | 64 | 118 | 25.00% | 35.16% | |
2010 | I | 56 | 92 | 56 | 105 | 22.50% | 34.78% |
II | 66 | 97 | 66 | 110 | 25.00% | 37.50% | |
III | 60 | 141 | 60 | 83 | 20.00% | 41.96% | |
IV | 63 | 84 | 63 | 116 | 25.00% | 35.20% | |
2015 | I | 55 | 93 | 55 | 98 | 22.50% | 35.95% |
II | 65 | 94 | 65 | 107 | 25.00% | 37.79% | |
III | 60 | 135 | 60 | 83 | 20.00% | 41.79% | |
IV | 61 | 81 | 61 | 115 | 25.00% | 34.66% | |
2020 | I | 49 | 92 | 49 | 88 | 20.00% | 35.77% |
II | 76 | 102 | 76 | 123 | 27.50% | 38.19% | |
III | 59 | 134 | 59 | 82 | 20.00% | 41.84% | |
IV | 61 | 80 | 61 | 115 | 25.00% | 34.66% |
Year | Block Number | Density Matrix | Image Matrix | ||||||
---|---|---|---|---|---|---|---|---|---|
1995 | I | 0.518 | 0.129 | 0.455 | 0.116 | 1 | 0 | 1 | 0 |
II | 0.326 | 0.545 | 0.131 | 0.000 | 1 | 1 | 0 | 0 | |
III | 0.182 | 0.000 | 0.952 | 0.143 | 0 | 0 | 1 | 0 | |
IV | 0.099 | 0.000 | 0.571 | 0.582 | 0 | 0 | 1 | 1 | |
2000 | I | 0.714 | 0.183 | 0.234 | 0.125 | 1 | 0 | 0 | 0 |
II | 0.202 | 0.590 | 0.221 | 0.000 | 0 | 1 | 0 | 0 | |
III | 0.078 | 0.067 | 0.857 | 0.115 | 0 | 0 | 1 | 0 | |
IV | 0.125 | 0.000 | 0.448 | 0.583 | 0 | 0 | 1 | 1 | |
2005 | I | 0.611 | 0.218 | 0.156 | 0.100 | 1 | 0 | 0 | 0 |
II | 0.182 | 0.618 | 0.263 | 0.000 | 0 | 1 | 1 | 0 | |
III | 0.067 | 0.071 | 0.833 | 0.101 | 0 | 0 | 1 | 0 | |
IV | 0.100 | 0.000 | 0.434 | 0.582 | 0 | 0 | 1 | 1 | |
2010 | I | 0.622 | 0.218 | 0.156 | 0.100 | 1 | 0 | 0 | 0 |
II | 0.173 | 0.600 | 0.253 | 0.000 | 0 | 1 | 1 | 0 | |
III | 0.067 | 0.071 | 0.833 | 0.101 | 0 | 0 | 1 | 0 | |
IV | 0.100 | 0.000 | 0.424 | 0.573 | 0 | 0 | 1 | 1 | |
2015 | I | 0.611 | 0.200 | 0.122 | 0.091 | 1 | 0 | 0 | 0 |
II | 0.173 | 0.591 | 0.232 | 0.000 | 0 | 1 | 0 | 0 | |
III | 0.067 | 0.071 | 0.833 | 0.101 | 0 | 0 | 1 | 0 | |
IV | 0.118 | 0.000 | 0.414 | 0.565 | 0 | 0 | 1 | 1 | |
2020 | I | 0.681 | 0.176 | 0.136 | 0.091 | 1 | 0 | 0 | 0 |
II | 0.222 | 0.576 | 0.213 | 0.000 | 0 | 1 | 0 | 0 | |
III | 0.074 | 0.065 | 0.819 | 0.101 | 0 | 0 | 1 | 0 | |
IV | 0.131 | 0.000 | 0.414 | 0.555 | 0 | 0 | 1 | 1 |
Variable Type | Variable | Factors | Description |
---|---|---|---|
Urban spatial expansion | Urban development intensity (%) | X1 | Built-up land expansion speed |
Land use structure (%) | X2 | The proportion of built-up land to the total area | |
Population status | Total population (104 people) | X3 | Total population at the end of the year |
Population urbanization (%) | X4 | Urban population to total population ratio | |
Economic development scale | Industrial structure (%) | X5 | The total output value of the secondary industry as a percentage of GDP |
External development level (%) | X6 | The proportion of actual foreign capital utilization to the GDP | |
Resident consumption level | Urban-rural income ratio (%) | X7 | The proportion of urban per capita disposable income to rural per capita disposable income |
Social consumption (yuan) | X8 | Retail sales of social consumption per capita | |
Ecological status | Carbon emission intensity (%) | X9 | Carbon emissions as a percentage of GDP |
Normalized vegetation index | X10 | Normalized vegetation index |
Indicator | Model Type | |||||
---|---|---|---|---|---|---|
Center of gravity-GTWR | Center of gravity-GWR | GTWR | GWR | TWR | OLS | |
R2 | 0.96 | 0.90 | 0.94 | 0.90 | 0.81 | 0.71 |
Indicator | Model Comparison | ||||
---|---|---|---|---|---|
Center of gravity-GTWR–Center of gravity-GWR | Center of gravity-GTWR–GTWR | Center of gravity -GTWR–GWR | Center of gravity-GTWR–TWR | Center of gravity-GTWR–OLS | |
R2 | 0.06 | 0.02 | 0.06 | 0.15 | 0.25 |
X1 | X1–X2 | X1–X3 | X1–X4 | X1–X5 | X1–X6 | X1–X7 | X1–X8 | X1–X9 | X1–X10 | |
---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.64 | 0.79 | 0.85 | 0.91 | 0.93 | 0.93 | 0.96 | 0.95 | 0.97 | 0.96 |
AICc | −2306 | −2443 | −2497 | −2556 | −2511 | −2492 | −2405 | −2477 | −2310 | −2418 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Chen, L.; Zhang, T.; Li, L.; Yuan, L.; Hu, S.; Cheng, L.; Shi, S.; Xiao, J. The Transmission Effect and Influencing Factors of Land Pressure in the Yangtze River Delta Region from 1995–2020. Remote Sens. 2023, 15, 250. https://doi.org/10.3390/rs15010250
Yu Z, Chen L, Zhang T, Li L, Yuan L, Hu S, Cheng L, Shi S, Xiao J. The Transmission Effect and Influencing Factors of Land Pressure in the Yangtze River Delta Region from 1995–2020. Remote Sensing. 2023; 15(1):250. https://doi.org/10.3390/rs15010250
Chicago/Turabian StyleYu, Ziqi, Longqian Chen, Ting Zhang, Long Li, Lina Yuan, Sai Hu, Liang Cheng, Shuai Shi, and Jianying Xiao. 2023. "The Transmission Effect and Influencing Factors of Land Pressure in the Yangtze River Delta Region from 1995–2020" Remote Sensing 15, no. 1: 250. https://doi.org/10.3390/rs15010250
APA StyleYu, Z., Chen, L., Zhang, T., Li, L., Yuan, L., Hu, S., Cheng, L., Shi, S., & Xiao, J. (2023). The Transmission Effect and Influencing Factors of Land Pressure in the Yangtze River Delta Region from 1995–2020. Remote Sensing, 15(1), 250. https://doi.org/10.3390/rs15010250