Coseismic Deformation and Fault Inversion of the 2017 Jiuzhaigou Ms 7.0 Earthquake: Constraints from Steerable Pyramid and InSAR Observations
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Processing
3. Methods
3.1. Steerable Pyramid Filtering Method
3.1.1. Multiscale Decomposition and Reconstruction
3.1.2. Directionally Steerable Filter
3.2. Decomposition of Three-Dimensional Deformation Field
4. Results
4.1. D-InSAR Interferogram Image and Displacement Field
4.2. SPF Processed Results
4.3. Validation Analysis of the Deformation Field
4.4. 3D Displacement Decomposition Constraints from MAI Method
4.5. Fault Slip Distribution Inversion and Analysis
4.6. SBAS Time Series Displacement Velocity Map
4.7. Analysis of the Spatiotemporal Movement Characteristics of the Huya Fault Segment
5. Discussion about the Regional Tectonic Movement
- Stage 1: The left-lateral slip along the main Kunlun fault was transferred to the West Tazang fault through the Huahu basin, which is a pull-apart basin [35].
- Stage 2: A small part of this left-lateral slip is transformed into a southwest-trending reverse movement. The majority of the slip is transformed into the shortening of the crust along nearly-N–S-trending structures, such as the Longriba fault, the Minjiang fault, and the Huya fault. The shortened crust led to the uplift of the Minshan Mountains [36].
- Stage 3: The results of deep seismic reflection show that the Tazang fault, the Minjiang fault, and the Huya fault, pushed by the boundary thrusting [37], are connected with the detachment body at a depth of about 30 km. The connection eventually led to the Jiuzhaigou earthquake.
6. Conclusions
- The steerable pyramid filtering method can be used to analyze the effectiveness of filtering images at different scales, remove invalid components, and enhance the contrast of InSAR images and the continuity of interference fringes. It not only effectively suppresses the noise in the interferogram, but also enhances the edge detail information in the interferogram.
- The InSAR interferogram after SPF method processing clearly observed the coseismic deformation field of the Jiuzhaigou earthquake, the maximum amount of surface deformation caused by the Jiuzhaigou earthquake was about 20 cm (line of sight), and there were asymmetric distribution characteristics of the homogenic deformation of the ascending orbit. The 2017 Jiuzhaigou earthquake was dominated by left-lateral slip, the surface movement was dominated by horizontal deformation, the vertical deformation was small, and the coseismic deformation variable in the east–west direction was the largest, with a maximum deformation of 0.2 m to the east and 0.14 m to the west. The maximum sliding amount was about 77 cm, located at a depth of 9 km. The moment magnitude obtained by inversion was Mw 6.6.
- The Jiuzhaigou earthquake occurred in the area where the Bayankara block was strongly deformed by the block of the South China block during its south–east movement, and its seismic fault was the hidden part of the north–west extension of the Huya fault.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, D.; Qu, C.; Shan, X. InSAR and GPS derived coseismic deformation and fault model of the 2017 Ms7.0 Jiuzhaigou earthquake in the Northeast Bayanhar block. Tectonophysics 2018, 726, 86–99. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Lee, J.-S.; Papathanassiou, K.P.; Ainsworth, T.L.; Grunes, M.R.; Reigber, A. A new technique for noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1456–1465. [Google Scholar]
- Wu, N.; Feng, D.-Z.; Li, J. A locally adaptive filter of interferometric phase images. IEEE Geosci. Remote Sens. Lett. 2006, 3, 73–77. [Google Scholar] [CrossRef]
- Chao, C.-F.; Chen, K.-S.; Lee, J.-S. Refined filtering of interferometric phase from InSAR data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 5315–5323. [Google Scholar] [CrossRef]
- Fu, S.; Long, X.; Yang, X.; Yu, Q. Directionally adaptive filter for synthetic aperture radar interferometric phase images. IEEE Trans. Geosci. Remote Sens. 2012, 51, 552–559. [Google Scholar] [CrossRef]
- Song, R.; Guo, H.; Liu, G.; Perski, Z.; Yue, H.; Han, C.; Fan, J. Improved Goldstein SAR interferogram filter based on adaptive-neighborhood technique. IEEE Geosci. Remote Sens. Lett. 2014, 12, 140–144. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Dong, Z.; Wu, M. A dual-domain interferometric phase filter. Remote Sens. Lett. 2015, 6, 962–971. [Google Scholar] [CrossRef]
- Liu, J.; Hu, J.; Li, Z.; Ma, Z.; Shi, J.; Xu, W.; Sun, Q. Three-Dimensional Surface Displacements of the 8 January 2022 Mw6.7 Menyuan Earthquake, China from Sentinel-1 and ALOS-2 SAR Observations. Remote Sens. 2022, 14, 1404. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Hou, G. High-resolution light field reconstruction using a hybrid imaging system. Appl. Opt. 2016, 55, 2580–2593. [Google Scholar] [CrossRef] [PubMed]
- Mathewson, J.; Hale, D. Detection of channels in seismic images using the steerable pyramid. In Seg Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 2008; p. 591. [Google Scholar]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.-W.; Chen, G.-H.; Wang, Q.-X.; Chen, L.-C.; Ren, Z.-K.; Xu, C.; Wei, Z.-Y.; Lu, R.-Q.; Tan, X.-B.; Dong, S.-P. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau. Chin. J. Geophys. 2017, 60, 4018–4026. [Google Scholar]
- Tang, R.; Lu, L. On the seismogeological characteristics of 1976 Songpan-Pingwu earthquakes. Seismol. Egol. 1981, 3, 41. [Google Scholar]
- Zhang, J.; Ren, J.; Chen, C.; Fu, J.; Yang, P.; Xiong, R.; Hu, C. The Late Pleistocene activity of the eastern part of east Kunlun fault zone and its tectonic significance. Sci. China Earth Sci. 2014, 57, 439–453. [Google Scholar] [CrossRef]
- Tang, X.; Guo, R.; Xu, J.; Sun, H.; Chen, X.; Zhou, J. Probing the Fault Complexity of the 2017 Ms 7.0 Jiuzhaigou Earthquake Based on the InSAR Data. Remote Sens. 2021, 13, 1573. [Google Scholar] [CrossRef]
- Papari, G.; Campisi, P.; Petkov, N. New families of Fourier eigenfunctions for steerable filtering. IEEE Trans. Image Process. 2011, 21, 2931–2943. [Google Scholar] [CrossRef] [Green Version]
- Freeman, W.T.; Adelson, E.H. The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 891–906. [Google Scholar] [CrossRef]
- Denis, F.; Baskurt, A.M. Multidirectional curvilinear structures detection using steerable pyramid. J. Electron. Imaging 2004, 13, 756–765. [Google Scholar] [CrossRef]
- Massonnet, D.; Souyris, J.-C. Imaging with Synthetic Aperture Radar, 1st ed.; EPFL Press: Lausanne, Switzerland, 2008. [Google Scholar]
- Nie, Z.; Wang, D.-J.; Jia, Z.; Yu, P.; Li, L. Fault model of the 2017 Jiuzhaigou Mw 6.5 earthquake estimated from coseismic deformation observed using Global Positioning System and Interferometric Synthetic Aperture Radar data. Earth Planets Space 2018, 70, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Liu, C.; Xu, J.; Liu, L.; Long, F.; Zhang, Z. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China. Chin. J. Geophys. 2017, 60, 4069–4082. (In Chinese) [Google Scholar]
- Shan, X.-J.; Qu, C.-Y.; Gong, W.-Y.; Zhao, D.-Z.; Zhang, Y.-F.; Zhang, G.-H.; Song, X.-G.; Liu, Y.-H.; Zhang, G.-F. Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion. Chin. J. Geophys. 2017, 60, 4527–4536. (In Chinese) [Google Scholar]
- Chen, W.; Qiao, X.; Liu, G.; Xiong, W.; Jia, Z.; Li, Y.; Wang, Y.; You, X.; Long, F. Study on the coseismic slip model and Coulomb stress of the 2017 Jiuzhaigou MS7.0 earthquake constrained by GNSS and InSAR measurements. Chin. J. Geophys. 2018, 61, 2122–2132. (In Chinese) [Google Scholar]
- Bechor, N.B.D.; Zebker, H.A. Measuring two-dimensional movements using a single InSAR pair. Geophys. Res. Lett. 2006, 33, 275–303. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Qiu, J.; Qiao, X. A study on the seismogenic structure of the 2016 Zaduo, Qinghai Ms6.2 earthquake using InSAR technology. Geod. Geodyn. 2017, 8, 342–346. [Google Scholar] [CrossRef]
- Xie, Z.; Zheng, Y.; Yao, H.; Fang, L.; Zhang, Y.; Liu, C.; Wang, M.; Shan, B.; Zhang, H.; Ren, J.; et al. Preliminary analysis on the source properties and seismogenic structure of the 2017 Ms7.0 Jiuzhaigou earthquake. Sci. China Earth Sci. 2018, 48, 339–352. [Google Scholar] [CrossRef]
- Usai, S.; Klees, R. SAR interferometry on a very long time scale: A study of the interferometric characteristics of man-made features. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2118–2123. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514, 1–13. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Li, Z.; Luo, Y.; Jiang, W.; Tian, Y. Measurement of subsidence in the Yangbajing geothermal fields, Tibet, from TerraSAR-X InSAR time series analysis. Int. J. Digit. Earth 2016, 9, 697–709. [Google Scholar] [CrossRef]
- Ren, J.; Xu, X.; Yeats, R.S.; Zhang, S. Millennial slip rates of the Tazang fault, the eastern termination of Kunlun fault: Implications for strain partitioning in eastern Tibet. Tectonophysics 2013, 608, 1180–1200. [Google Scholar] [CrossRef]
- Hu, C.Z.; Ren, J.W.; Yang, P.X.; Xiong, R.W.; Chen, C.Y.; Fu, J.D. Discussion on the compression-shear activity of the Tazang fault in East Kunlun and uplift of plateau. Acta Geol. Sin. 2017, 91, 1401–1415, (In Chinese with English Abstract). [Google Scholar]
- Kirby, E.; Whipple, K.X.; Burchfiel, B.C.; Tang, W.; Berger, G.; Sun, Z.; Chen, Z. Neotectonics of the Min Shan, China: Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau. Geol. Soc. Am. Bull. 2000, 112, 375–393. [Google Scholar] [CrossRef]
- Hu, C.; Cai, Y.; Wang, Z. Effects of large historical earthquakes, viscous relaxation, and tectonic loading on the 2008 Wenchuan earthquake. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
Sensor | Orbit Direction | Master–Slave Date | Track | Spatial Perpendicular Baseline (m) | Temporal Baseline (day) | Incident Angle (◦) |
---|---|---|---|---|---|---|
Sentinel-1A | Ascending | 20170730–20170811 | T128 | 36.0 | 12 | 39.2 |
Sentinel-1A | Descending | 20170806–20170818 | T62 | 34.0 | 12 | 39.2 |
Sensor | Imaging Date | Orbit Direction | Imaging Mode | Polarization Mode | Cumulative Time Baseline (Day) |
---|---|---|---|---|---|
Sentinel-1A | 20170818 | Descending | IW | VV | 0 |
Sentinel-1A | 20170830 | Descending | IW | VV | 12 |
Sentinel-1A | 20170911 | Descending | IW | VV | 24 |
Sentinel-1A | 20170923 | Descending | IW | VV | 36 |
Sentinel-1A | 20171005 | Descending | IW | VV | 48 |
Sentinel-1A | 20171017 | Descending | IW | VV | 60 |
Sentinel-1A | 20171110 | Descending | IW | VV | 84 |
Sentinel-1A | 20171122 | Descending | IW | VV | 96 |
Sentinel-1A | 20171204 | Descending | IW | VV | 108 |
Sentinel-1A | 20171216 | Descending | IW | VV | 120 |
Sentinel-1A | 20171228 | Descending | IW | VV | 132 |
Sentinel-1A | 20180109 | Descending | IW | VV | 144 |
Sentinel-1A | 20180121 | Descending | IW | VV | 156 |
Sentinel-1A | 20180202 | Descending | IW | VV | 168 |
Sentinel-1A | 20180214 | Descending | IW | VV | 180 |
Sentinel-1A | 20180226 | Descending | IW | VV | 192 |
SPF Method | Original | |
---|---|---|
Number of residual points remain | 194 | 227 |
Unwrapping time/s | 1.02 | 4.70 |
EPI | 0.65 | 0.37 |
RMSE | 0.242 | 1.235 |
Organization | Satellite | Orbit | Uplift/m | Subsidence/m |
---|---|---|---|---|
Nie et al. | Sentinel-1A | Ascending | 0.07 | 0.21 |
Descending | 0.16 | 0.08 | ||
Ji et al. | Sentinel-1A | Ascending | 0.11 | 0.22 |
Descending | 0.09 | 0.10 | ||
Chen et al. | Sentinel-1A | Ascending | 0.07 | 0.21 |
Descending | 0.16 | 0.08 | ||
Shan et al. | Sentinel-1A | Ascending | 0.10 | 0.22 |
Descending | 0.14 | 0.10 | ||
This essay | Sentinel-1A | Ascending | 0.10 | 0.20 |
Descending | 0.19 | 0.14 |
Institution | Longitude/°E | Latitude/°N | Magnitude | Depth/km | Strike/° | Slip/° |
---|---|---|---|---|---|---|
Harvard | 103.9 | 33.21 | 6.5 | 14.9 | 242 | −168 |
CENC | 103.82 | 33.20 | 6.5 | 11 | 326 | −15 |
USGS | 103.85 | 33.193 | 6.5 | 9 | 246 | −173 |
This Paper | 103.81 | 33.16 | 6.6 | 9 | 267 | −160.74 |
Area | Central Coordinate | Point | Longitude | Latitude |
---|---|---|---|---|
1 | 103.96E 32.94N | 1 | 103°97″ | 32°99″ |
2 | 104°03″ | 32°89″ | ||
3 | 103°96″ | 32°90″ | ||
4 | 103°92″ | 32°96″ | ||
2 | 103.9E 33.39N | 5 | 103°89″ | 33°42″ |
6 | 103°88″ | 33°36″ | ||
7 | 103°82″ | 33°37″ | ||
3 | 103.98E 33.17N | 8 | 103°97″ | 33°19″ |
9 | 103°96″ | 33°14″ | ||
10 | 104°01″ | 33°18″ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.; Huang, X.; Wang, Z. Coseismic Deformation and Fault Inversion of the 2017 Jiuzhaigou Ms 7.0 Earthquake: Constraints from Steerable Pyramid and InSAR Observations. Remote Sens. 2023, 15, 222. https://doi.org/10.3390/rs15010222
Peng W, Huang X, Wang Z. Coseismic Deformation and Fault Inversion of the 2017 Jiuzhaigou Ms 7.0 Earthquake: Constraints from Steerable Pyramid and InSAR Observations. Remote Sensing. 2023; 15(1):222. https://doi.org/10.3390/rs15010222
Chicago/Turabian StylePeng, Wenshu, Xuri Huang, and Zegen Wang. 2023. "Coseismic Deformation and Fault Inversion of the 2017 Jiuzhaigou Ms 7.0 Earthquake: Constraints from Steerable Pyramid and InSAR Observations" Remote Sensing 15, no. 1: 222. https://doi.org/10.3390/rs15010222
APA StylePeng, W., Huang, X., & Wang, Z. (2023). Coseismic Deformation and Fault Inversion of the 2017 Jiuzhaigou Ms 7.0 Earthquake: Constraints from Steerable Pyramid and InSAR Observations. Remote Sensing, 15(1), 222. https://doi.org/10.3390/rs15010222