Automatic Segmentation of Bulk Material Heaps Using Color, Texture, and Topography from Aerial Data and Deep Learning-Based Computer Vision
Abstract
:1. Introduction
1.1. Using Remote Sensing Data for Bulk Material Volume Computation
1.2. Bottleneck: Manual Data Processing Steps
1.3. Proposed Method and Objective
1.4. Existing Approaches to Automate Stockpile Segmentation in Remote Sensing Data
1.4.1. Approaches Based on Surface Material Recognition
1.4.2. Approaches Based on Direct Segmentation of Individual Heap Instances
1.4.3. Related Tasks
2. Materials and Methods
2.1. Data Source and Industrial Context
2.2. Methodology
2.2.1. Segmentation of 2.5D Raster- vs. 3D Set-Based Data Structures
2.2.2. Implications of Transfer Learning Regarding Input Channel Dimensionality
2.3. Proposed Pipeline
2.4. Component 1: Pre-Processing
2.4.1. Removing “Overhanging” Vertical Occlusions
2.4.2. Converting the Adjusted Point Cloud to 2.5D Raster Format
2.4.3. Compressing the RGB Color Information into Less than Three Channels (Optional)
2.4.4. Increasing the Contrast of the Elevation Map (Optional)
2.4.5. Computing the Local Slope (Optional)
2.4.6. Stacking the Individual Views
2.5. Component 2: Sliding Window-Based Segmentation
2.5.1. Instance Segmentation Core
2.5.2. Sliding Window-Based Processing of Large Sites
2.6. Component 3: Evaluation—Volume Computation
2.7. Evaluation Metrics
2.8. Prototype Implementation and Experimental Setup
2.8.1. Pre-Processing
2.8.2. Model Training
2.8.3. Inference
2.8.4. Volume Computation
3. Preliminary Results
3.1. Footprint-Accuracy
3.2. Volumetric Accuracy
4. Discussion
4.1. Error Analysis
4.1.1. False Positives
4.1.2. False Negatives
4.2. Semi-Automated Inventory System and Human-in-the-Loop
4.3. Outlook and Further Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tucci, G.; Gebbia, A.; Conti, A.; Fiorini, L.; Lubello, C. Monitoring and Computation of the Volumes of Stockpiles of Bulk Material by Means of UAV Photogrammetric Surveying. Remote Sens. 2019, 11, 1471. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.R.; Riley, D.R.; Messner, J.I. Fundamental Principles of Site Material Management. J. Constr. Eng. Manag. 2005, 131, 808–815. [Google Scholar] [CrossRef]
- Agboola, O.; Babatunde, D.E.; Fayomi, O.S.I.; Sadiku, E.R.; Popoola, P.; Moropeng, L.; Yahaya, A.; Mamudu, O.A. A review on the impact of mining operation: Monitoring, assessment and management. Results Eng. 2020, 8, 100181. [Google Scholar] [CrossRef]
- Kovanič, L.; Blistan, P.; Štroner, M.; Urban, R.; Blistanova, M. Suitability of Aerial Photogrammetry for Dump Documentation and Volume Determination in Large Areas. Appl. Sci. 2021, 11, 6564. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Y.; Zhang, Q. Automatic Stockpile Extraction and Measurement Using 3D Point Cloud and Multi-Scale Directional Curvature. Remote Sens. 2020, 12, 960. [Google Scholar] [CrossRef] [Green Version]
- Son, S.W.; Kim, D.W.; Sung, W.G.; Yu, J.J. Integrating UAV and TLS Approaches for Environmental Management: A Case Study of a Waste Stockpile Area. Remote Sens. 2020, 12, 1615. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Lv, X.; Wang, B.; Lian, X. Novel Method for Monitoring Mining Subsidence Featuring Co-Registration of UAV LiDAR Data and Photogrammetry. Appl. Sci. 2022, 12, 9374. [Google Scholar] [CrossRef]
- Godone, D.; Allasia, P.; Borrelli, L.; Gullà, G. UAV and Structure from Motion Approach to Monitor the Maierato Landslide Evolution. Remote Sens. 2020, 12, 1039. [Google Scholar] [CrossRef] [Green Version]
- Park, H.C.; Rachmawati, T.S.N.; Kim, S. UAV-Based High-Rise Buildings Earthwork Monitoring—A Case Study. Sustainability 2022, 14, 10179. [Google Scholar] [CrossRef]
- Carabassa, V.; Montero, P.; Alcañiz, J.M.; Padró, J.-C. Soil Erosion Monitoring in Quarry Restoration Using Drones. Minerals 2021, 11, 949. [Google Scholar] [CrossRef]
- A Ab Rahman, A.; Maulud, K.N.A.; A Mohd, F.; Jaafar, O.; Tahar, K.N. Volumetric calculation using low cost unmanned aerial vehicle (UAV) approach. IOP Conf. Ser. Mater. Sci. Eng. 2017, 270, 012032. [Google Scholar] [CrossRef] [Green Version]
- Alsayed, A.; Yunusa-Kaltungo, A.; Quinn, M.K.; Arvin, F.; Nabawy, M.R.A. Drone-Assisted Confined Space Inspection and Stockpile Volume Estimation. Remote Sens. 2021, 13, 3356. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, Y.; Liu, J.; Li, D.; Li, S.; Nie, W.; Chung, I.-H. Automatic Volume Calculation and Mapping of Construction and Demolition Debris Using Drones, Deep Learning, and GIS. Drones 2022, 6, 279. [Google Scholar] [CrossRef]
- Sivitskis, A.J.; Lehner, J.W.; Harrower, M.J.; Dumitru, I.A.; Paulsen, P.E.; Nathan, S.; Viete, D.R.; Al-Jabri, S.; Helwing, B.; Wiig, F.; et al. Detecting and Mapping Slag Heaps at Ancient Copper Production Sites in Oman. Remote Sens. 2019, 11, 3014. [Google Scholar] [CrossRef] [Green Version]
- Finkbeiner, M.S.; Uchiyama, N.; Sawodny, O. Shape Recognition of Material Heaps in Outdoor Environments and Optimal Excavation Planning. In Proceedings of the 2019 International Electronics Symposium (IES), Surabaya, Indonesia, 27–28 September 2019; pp. 58–62. [Google Scholar] [CrossRef]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef]
- Kumar, C.; Mathur, Y.; Jannesari, A. Efficient Volume Estimation for Dynamic Environments using Deep Learning on the Edge. In Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lyon, France, 30 May–3 June 2022; pp. 995–1002. [Google Scholar] [CrossRef]
- Fan, H.; Tian, Z.; Xu, X.; Sun, X.; Ma, Y.; Liu, H.; Lu, H. Rockfill material segmentation and gradation calculation based on deep learning. Case Stud. Constr. Mater. 2022, 17, e01216. [Google Scholar] [CrossRef]
- Huang, H.; University of Illinois Urbana-Champaign; Tutumluer, E.; Luo, J.; Ding, K.; Qamhia, I.; Hart, J. 3D Image Analysis Using Deep Learning for Size and Shape Characterization of Stockpile Riprap Aggregates—Phase 2; Illinois Center for Transportation: Rantoul, IL, USA, 2022. [Google Scholar] [CrossRef]
- Hyde, D.; Raffman, D. Sorites Paradox. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2018; Available online: https://plato.stanford.edu/archives/sum2018/entries/sorites-paradox/ (accessed on 25 October 2022).
- Kaijaluoto, R.; Kukko, A.; El Issaoui, A.; Hyyppä, J.; Kaartinen, H. Semantic segmentation of point cloud data using raw laser scanner measurements and deep neural networks. ISPRS Open J. Photogramm. Remote Sens. 2022, 3, 100011. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. Available online: https://openaccess.thecvf.com/content_cvpr_2017/html/Qi_PointNet_Deep_Learning_CVPR_2017_paper.html (accessed on 22 October 2022).
- Zhao, H.; Jiang, L.; Fu, C.-W.; Jia, J. PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 5560–5568. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, R.; Chu, W.; Chen, L.; Tian, D.; Li, Y.; Cao, D. Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review. IEEE Trans. Intell. Transp. Syst. 2022, 23, 722–739. [Google Scholar] [CrossRef]
- Griffiths, D.; Boehm, J. A Review on Deep Learning Techniques for 3D Sensed Data Classification. Remote Sens. 2019, 11, 1499. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Kentsch, S.; Caceres, M.L.L.; Serrano, D.; Roure, F.; Diez, Y. Computer Vision and Deep Learning Techniques for the Analysis of Drone-Acquired Forest Images, a Transfer Learning Study. Remote Sens. 2020, 12, 1287. [Google Scholar] [CrossRef] [Green Version]
- Maqsood, M.; Nazir, F.; Khan, U.; Aadil, F.; Jamal, H.; Mehmood, I.; Song, O.-Y. Transfer Learning Assisted Classification and Detection of Alzheimer’s Disease Stages Using 3D MRI Scans. Sensors 2019, 19, 2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- COCO—Common Objects in Context. Available online: https://cocodataset.org/#explore (accessed on 19 October 2022).
- Reina, A.J.; Martínez, J.L.; Mandow, A.; Morales, J.; García-Cerezo, A.; Martínez, J.L.; Morales, J. Collapsible cubes: Removing overhangs from 3D point clouds to build local navigable elevation maps. In Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besançon, France, 8–11 July 2014; pp. 1012–1017. [Google Scholar] [CrossRef]
- las2dem_README. Available online: http://www.cs.unc.edu/~isenburg/lastools/download/las2dem_README.txt (accessed on 14 October 2022).
- LAStools. 12 October 2022. Available online: https://github.com/LAStools/LAStools (accessed on 14 October 2022).
- OpenCV: Color Conversions. Available online: https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html (accessed on 17 October 2022).
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019. [Google Scholar]
- Python, R. Image Segmentation Using Color Spaces in OpenCV + Python–Real Python. Available online: https://realpython.com/python-opencv-color-spaces/ (accessed on 17 October 2022).
- Color Quantization Using K-Means. Scikit-Learn. Available online: https://scikit-learn/stable/auto_examples/cluster/plot_color_quantization.html (accessed on 22 October 2022).
- Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523–3542. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. Available online: https://openaccess.thecvf.com/content_iccv_2015/html/Girshick_Fast_R-CNN_ICCV_2015_paper.html (accessed on 22 October 2022).
- Thoma, M. A Survey of Semantic Segmentation. arXiv 2016, arXiv:1602.06541. [Google Scholar]
- Padilla, R.; Netto, S.L.; da Silva, E.A.B. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; pp. 237–242. [Google Scholar]
- Kirillov, A.; He, K.; Girshick, R.; Rother, C.; Dollar, P. Panoptic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 9404–9413. Available online: https://openaccess.thecvf.com/content_CVPR_2019/html/Kirillov_Panoptic_Segmentation_CVPR_2019_paper.html (accessed on 17 October 2022).
- PyTorch. Available online: https://www.pytorch.org (accessed on 26 October 2022).
- OpenCV. Available online: https://opencv.org/ (accessed on 26 October 2022).
- NumPy. Available online: https://numpy.org/ (accessed on 15 October 2022).
- GDAL-Geospatial Data Abstraction Library. Open Source Geospatial Foundation, 26 October 2022. Available online: https://github.com/OSGeo/gdal (accessed on 26 October 2022).
- Azure VM Comparison. Available online: https://azureprice.net/vm/Standard_NC6 (accessed on 21 October 2022).
- Open3D: A Modern Library for 3D Data Processing—Open3D 0.15.1 Documentation. Available online: http://www.open3d.org/docs/release/ (accessed on 15 October 2022).
Test Site | Precision_Obj | Recall_Obj | F1_Obj | Iou_Pix | Precision_Pix | Recall_Pix | F1_Pix |
---|---|---|---|---|---|---|---|
A | 0.83 | 0.79 | 0.81 | 0.83 | 0.97 | 0.85 | 0.91 |
B | 0.67 | 0.94 | 0.78 | 0.81 | 0.91 | 0.89 | 0.90 |
C | 0.43 | 0.64 | 0.51 | 0.81 | 0.93 | 0.87 | 0.90 |
Average | 0.65 | 0.79 | 0.70 | 0.82 | 0.93 | 0.87 | 0.90 |
Pile | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | AVG |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
area IoU | 0.91 | 0.84 | 0.97 | 0.92 | 0.80 | 0.90 | 0.83 | 0.92 | 0.84 | 0.89 | 0.82 | 0.51 | 0.80 | 0.92 | 0.83 | 0.78 | 0.85 | 0.85 |
Volume Accuracy | 0.99 | 0.90 | 0.99 | 0.96 | 0.71 | 0.91 | 0.95 | 0.97 | 0.87 | 0.90 | 0.81 | 0.86 | 0.96 | 0.99 | 0.81 | 0.82 | 0.93 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellinger, A.; Woerner, C.; Scherer, R. Automatic Segmentation of Bulk Material Heaps Using Color, Texture, and Topography from Aerial Data and Deep Learning-Based Computer Vision. Remote Sens. 2023, 15, 211. https://doi.org/10.3390/rs15010211
Ellinger A, Woerner C, Scherer R. Automatic Segmentation of Bulk Material Heaps Using Color, Texture, and Topography from Aerial Data and Deep Learning-Based Computer Vision. Remote Sensing. 2023; 15(1):211. https://doi.org/10.3390/rs15010211
Chicago/Turabian StyleEllinger, Andreas, Christian Woerner, and Raimar Scherer. 2023. "Automatic Segmentation of Bulk Material Heaps Using Color, Texture, and Topography from Aerial Data and Deep Learning-Based Computer Vision" Remote Sensing 15, no. 1: 211. https://doi.org/10.3390/rs15010211
APA StyleEllinger, A., Woerner, C., & Scherer, R. (2023). Automatic Segmentation of Bulk Material Heaps Using Color, Texture, and Topography from Aerial Data and Deep Learning-Based Computer Vision. Remote Sensing, 15(1), 211. https://doi.org/10.3390/rs15010211